【題目】已知線段AB,反向延長(zhǎng)線段ABC,使BCAB,DBC的中點(diǎn),EBD的中點(diǎn).

(1)①補(bǔ)全圖形;

②若AB4,則AE_____(直接寫出結(jié)果).

(2)AE2,求AC的長(zhǎng).

【答案】(1)①補(bǔ)圖見解析;②;(2)AC=8.

【解析】

(1)由尺規(guī)作圖畫出符合題意的圖,線段的中點(diǎn),線段的和差倍分計(jì)算出AE的長(zhǎng)為

(2)由線段的中點(diǎn),線段的和差倍分,方程計(jì)算出AC的長(zhǎng)為8.

解:(1)依題意得:

如圖所示:

②∵AB4BCAB,

∴BC10

∵DBC的中點(diǎn),

∴DB5,

∵EBD的中點(diǎn),

∴BE,

∵AEABBE,

∴AE4,

故答案為;

(2)設(shè)BEx,則BD2x,BC4x,

∵BCAB,

∴4x(x+2)

解得:x,

∵ADDEAE

∴AD2,

∵ACAD+CD,

∴AC+8,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC,點(diǎn)A,C分別在x軸,y軸的正半軸上,OA=4,OC=2.點(diǎn)Pm,0)是射線OA上的動(dòng)點(diǎn),EPC中點(diǎn),作OEAF,EFOAG,

1)寫出點(diǎn)E,F的坐標(biāo)(用含m的代數(shù)式表示):E(_____,_____),F(______,_____).

2)當(dāng)線段EF取最小值時(shí),m的值為______;此時(shí)OEAF的周長(zhǎng)為______.

3)①當(dāng)OEAF是矩形時(shí),求m的值.

②將△OEF沿EF翻折到△OEF,若△OEF與△AEF重疊部分的面積為1時(shí),m的值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)M、N分別在線段DA、BA的延長(zhǎng)線上,且BD=BN=DM,連接BM、DN并延長(zhǎng)交于點(diǎn)P.

(1)求證:∠P=90°﹣C;

(2)當(dāng)∠C=90°,ND=NP時(shí),判斷線段MPAM的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是線段上任一點(diǎn),,兩點(diǎn)分別從同時(shí)向點(diǎn)運(yùn)動(dòng),且點(diǎn)的運(yùn)動(dòng)速度為點(diǎn)的運(yùn)動(dòng)速度為,運(yùn)動(dòng)的時(shí)間為.

1)若,

①運(yùn)動(dòng)后,求的長(zhǎng);

②當(dāng)在線段上運(yùn)動(dòng)時(shí),試說明;

2)如果時(shí),,試探索的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點(diǎn)

1求直線的解析式;

2若直線與直線相交于點(diǎn)求點(diǎn)的坐標(biāo);

3根據(jù)圖象直接寫出關(guān)于的不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在□ABCD中,E、F分別為BCAD的中點(diǎn).

1)試判斷四邊形AECF是什么四邊形?為什么?

2)當(dāng)ABAC時(shí),四邊形AECF是什么四邊形?

3)結(jié)合圖形,請(qǐng)你添加一個(gè)條件,使其與原已知條件共同能推出四邊形AECF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在菱形ABCD中,AC是對(duì)角線,CDCE,連接DE

1)若AC16,CD10,求DE的長(zhǎng).

2GBC上一點(diǎn),若GCGFCHCHGF,垂足為P,求證:DHCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,勵(lì)志學(xué)習(xí)小組對(duì)有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點(diǎn)E,F(xiàn)(不包括線段的端點(diǎn)).

(1)初步嘗試

如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;

(2)類比發(fā)現(xiàn)

如圖2,若AD=2AB,過點(diǎn)C作CH⊥AD于點(diǎn)H,求證:AE=2FH;

在證明這道題時(shí),勵(lì)志學(xué)習(xí)小組成員小同學(xué)進(jìn)行如下書寫,請(qǐng)你將此證明過程補(bǔ)充完整

證明:設(shè)DH=x,由由題意,CD=2x,CH=x,

∴AD=2AB=4x,

∴AH=AD﹣DH=3x,

∵CH⊥AD,

AC==2x,

(3)深入探究

在(2)的條件下,勵(lì)志學(xué)習(xí)小組成員小漫同學(xué)探究發(fā)現(xiàn),試判斷小漫同學(xué)的結(jié)論是否正確,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交點(diǎn)A(1,0),B(-3,0) .與y軸交點(diǎn)B(0,3),如圖1所示,D為拋物線的頂點(diǎn)。

(1)求拋物線的解析式;

(2)如圖1若R為y軸上的一個(gè)動(dòng)點(diǎn),連接AR,則RB+AR的最小值為

(3)在x軸上取一動(dòng)點(diǎn)P(m,0),,過點(diǎn)P作x軸的垂線,分別交拋物線、CD、CB于點(diǎn)Q、F、E,如圖2所示,求證EF=EP.

(4)設(shè)此拋物線的對(duì)稱軸為直線MN,在直線MN上取一點(diǎn)T,使∠BTN=∠CTN.直接寫出點(diǎn)T的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案