【題目】如圖,BF為⊙O的直徑,直線AC交⊙O于A,B兩點(diǎn),點(diǎn)D在⊙O上,BD平分∠OBC,DE⊥AC于點(diǎn)E.

(1)求證:直線DE是⊙O的切線;
(2)若 BF=10,sin∠BDE= ,求DE的長(zhǎng).

【答案】
(1)證明:如圖所示,連接OD,

∵OD=OB,

∴∠ODB=∠OBD,

∵BD平分∠OBC,

∴∠OBD=∠DBE,

∴∠ODB=∠DBE,

∴OD∥AC,

∵DE⊥AC,

∴OD⊥DE,

∵OD是⊙O的半徑,

∴直線DE是⊙O的切線


(2)解:如圖,連接DF,

∵BF是⊙O的直徑,

∴∠FDB=90°,

∴∠F+∠OBD=90°,

∵∠OBD=∠DBE,∠BDE+∠DBE=90°,

∴∠F=∠BDE,

在Rt△BDF中, =sinF=sin∠BDE= ,

∴BD=10× =2 ,

∴在Rt△BDE中,sin∠BDE= = ,

∴BE=2 × =2,

∴在Rt△BDE中,DE= = =4.


【解析】(1)先連接OD,根據(jù)∠ODB=∠DBE,即可得到OD∥AC,再根據(jù)DE⊥AC,可得OD⊥DE,進(jìn)而得出直線DE是⊙O的切線;(2)先連接DF,根據(jù)題意得到∠F=∠BDE,在Rt△BDF中,根據(jù) =sinF=sin∠BDE= ,可得BD=2 ,在Rt△BDE中,根據(jù)sin∠BDE= = ,可得BE=2,最后依據(jù)勾股定理即可得到DE的長(zhǎng).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用解直角三角形,掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊CD上,且CD=3DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論: ①△ABG≌△AFG;②BG=GC;③AGCF;④SFGC=28.8. 其中正確結(jié)論的個(gè)數(shù)是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,OEAB于O,若BOD=40°,則不正確的結(jié)論是( )

A.AOC=40° B.COE=130° C.EOD=40° D.BOE=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E,F(xiàn)為平行四邊形ABCD的對(duì)角線BD上的兩點(diǎn),AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F. 求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù) 的圖象與性質(zhì),下列說(shuō)法正確的是( )
A.對(duì)稱軸是直線 ,最小值是
B.對(duì)稱軸是直線 ,最大值是
C.對(duì)稱軸是直線 ,最小值是
D.對(duì)稱軸是直線 ,最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果商販老徐上水果批發(fā)市場(chǎng)進(jìn)貨,他了解到草莓的批發(fā)價(jià)格是每箱60元,蘋(píng)果的批發(fā)價(jià)格是每箱40元.老徐購(gòu)得草莓和蘋(píng)果共60箱,剛好花費(fèi)3100元.

1)問(wèn)草莓、蘋(píng)果各購(gòu)買(mǎi)了多少箱?

2)老徐有甲、乙兩家店鋪,每售出一箱草莓或蘋(píng)果,甲店分別獲利15元和20元,乙店分別獲利12元和16元.設(shè)老徐將購(gòu)進(jìn)的60箱水果分配給甲店草莓箱,蘋(píng)果箱,其余均分配給乙店.由于他口碑良好,兩家店都很快賣(mài)完了這批水果.

①若老徐在甲店獲利600元,則他在乙店獲利多少元?

②若老徐希望獲得總利潤(rùn)為1000元,則=_______.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)O是△ABC的外心,若∠BOC=80°,則∠BAC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位),△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.建立如圖所示的直角坐標(biāo)系,

(1)請(qǐng)?jiān)趫D中標(biāo)出△ABC的外接圓的圓心P的位置,并填寫(xiě): 圓心P的坐標(biāo):P( ,
(2)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,畫(huà)出圖形,并求△ABC掃過(guò)的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為,將線段平移,若平移后的對(duì)應(yīng)點(diǎn)為,則的值是_____________

查看答案和解析>>

同步練習(xí)冊(cè)答案