【題目】如圖,正方形ABCD中,AB=12,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,下列結(jié)論: ①△ABG≌△AFG;②BG=GC;③AGCF;④SFGC=28.8. 其中正確結(jié)論的個數(shù)是(

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】

由正方形的性質(zhì)和折疊的性質(zhì)得出AB=AF,AFG=90°,HL證明RtABGRtAFG,得出①正確;

設(shè)BG=FG=x,CG=12x.由勾股定理得出方程,解方程求出BG,得出GC即可得出②正確;

由全等三角形的性質(zhì)和三角形內(nèi)角和定理得出∠AGB=GCF,得出AGCF即可得出③正確;

通過計算三角形的面積得出④錯誤即可得出結(jié)果

①正確.理由如下

∵四邊形ABCD是正方形,AB=BC=CD=AD=12,B=GCE=D=90°,由折疊的性質(zhì)得AF=AD,AFE=D=90°,∴∠AFG=90°,AB=AF.在RtABGRtAFG,RtABGRtAFGHL);

②正確.理由如下

由題意得EF=DE=CD=4,設(shè)BG=FG=xCG=12x

在直角△ECG,根據(jù)勾股定理得(12x2+82=(x+42,解得x=6,BG=6,GC=126=6,BG=GC

③正確.理由如下

CG=BG,BG=GFCG=GF,∴△FGC是等腰三角形,GFC=GCF

又∵RtABGRtAFG∴∠AGB=AGF,AGB+∠AGF=2AGB=180°﹣FGC=GFC+∠GCF=2GFC=2GCF∴∠AGB=GCF,AGCF;

④錯誤.理由如下

SGCE=GCCE=×6×8=24

GF=6EF=4,GFC和△FCE等高,SGFCSFCE=32,SGFC=×24=28.8

故④不正確∴正確的有①②③

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABCAB15,AC13,高AD12,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,沿圖示的中位線DE剪一刀,拼成如圖1所示的平行四邊形BCFD.請仿上述方法,按要求完成下列操作設(shè)計,并在規(guī)定位置畫出圖示:

(1)在△ABC中,若∠C=90°,沿著中位線剪一刀,可拼成矩形或等腰梯形,請將拼成的圖形畫在圖2位置(只需畫一個);

(2)在△ABC中,若AB=2BC,沿著中位線剪一刀,可拼成菱形,并將拼成的圖形畫在圖3位置;

(3)在△ABC中,需增加什么條件,沿著中位線剪一刀,拼成正方形,并將拼成的圖形和符合條件的三角形一同畫在圖4位置;

(4)在△ABC中,若沿著某條線剪一刀,能拼成等腰梯形,請將拼成的圖形畫在圖5位置(保留尋求剪裁線的痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B(4、0)兩點,與y軸交于C點.

(1)求拋物線的解析式;
(2)T是拋物線對稱軸上的一點,且△ATC是以AC為底的等腰三角形,求點T的坐標;
(3)M、Q兩點分別從A、B點以每秒1個單位長度的速度沿x軸同時出發(fā)相向而行,當點M到原點時,點Q立刻掉頭并以每秒 個單位長度的速度向點B方向移動,當點M到達拋物線的對稱軸時,兩點停止運動,過點M的直線l⊥x軸交AC或BC于點P.求點M的運動時間t與△APQ面積S的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察:從2開始,連續(xù)的偶數(shù)相加,它們的和的情況如下

(1)當加數(shù)m個數(shù)為n時,和(S與n之間有什么樣的數(shù)量關(guān)系,用公式表示出來;

(2)按此規(guī)律計算(寫出必要的演算過程)

2+4+6++300的值;

162+164+166++400的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,Pa,b)是ABC的邊AC上一點,ABC經(jīng)平移得到A1B1C1,且點P的對應(yīng)點為P1a+5,b+4).

1)寫出ABC的三個頂點的坐標;

2)請在平面直角坐標系中畫出A1B1C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC邊上的垂直平分線交AC于D,交AB于E,延長DE到F,使BF=CE

(1)四邊形BCEF是平行四邊形嗎?說說你的理由.
(2)當∠A等于多少時,四邊形BCEF是菱形,并說出你的理由.
(3)四邊形BCEF可以是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線,直線和直線交于點和點,為直線上的一點,,分別是直線上的定點.

1)若點在線段、兩點除外)上運動時,問、之間的關(guān)系是什么?這種關(guān)系是否發(fā)生變化?請說明理由;

2)若在線段之外時,、、的關(guān)系又怎樣?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BF為⊙O的直徑,直線AC交⊙O于A,B兩點,點D在⊙O上,BD平分∠OBC,DE⊥AC于點E.

(1)求證:直線DE是⊙O的切線;
(2)若 BF=10,sin∠BDE= ,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案