【題目】如圖,正方形ABCD的邊長為2,點E、F分別是CDBC的中點,AEDF交于點P,連接CP,則CP_____

【答案】

【解析】

由△ADE≌△DCF可導(dǎo)出四邊形CEPF對角互補,而CECF,于是將△CEPC點逆時針旋轉(zhuǎn)90°至△CFG,可得△CPG是等腰直角三角形,從而PGPF+FGPF+PECP,求出PEPF的長度即可求出PC的長度.

解:如圖,作CGCPDF的延長線于G

則∠PCF+GCF=∠PCG90°,

∵四邊形ABCD是邊長為2的正方形,

ADCDBCAB2,∠ADC=∠DCB90°,

E、F分別為CD、BC中點,

DECECFBF1,

AEDF,

DP

PE,PF

在△ADE和△DCF中:

∴△ADE≌△DCFSAS),

∴∠AED=∠DFC

∴∠CEP=∠CFG,

∵∠ECP+PCF=∠DCB90°,

∴∠ECP=∠FCG,

在△ECP和△FCG中:

∴△ECP≌△FCGASA),

CPCG,EPFG,

∴△PCG為等腰直角三角形,

PGPF+FGPF+PECP,

CP

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=4.BM平分∠ABCAC于點M,點D為射線BM上一點,以點B為旋轉(zhuǎn)中心將線段BD逆時針旋轉(zhuǎn)60°得到線段BE,連接DE.交射線BA于點F,連接ADAE.當(dāng)以A、D、M為頂點的三角形與AEF全等時,DE的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年,《中國詩詞大會》、《朗讀者》,《經(jīng)典詠流傳》、《國家寶藏》等文化類節(jié)目相繼走紅,被人們稱為“清流綜藝”,匯文初中文學(xué)社想了解全校學(xué)生對這四個節(jié)目的喜愛情況,隨機抽取了部分學(xué)生進行調(diào)查統(tǒng)計,要求每名學(xué)生選出一個自己最喜愛的節(jié)目,并將調(diào)查結(jié)果給制成如下統(tǒng)計圖(其中《中國詩詞大會》,《朗讀者》,《經(jīng)典詠流傳》,《國家寶藏》分別用A、B、C、D表示),請你解答下列問題:

1)本次調(diào)查的學(xué)生人數(shù)是  人:

2)請把條形統(tǒng)計圖補充完整.

3)在扇形統(tǒng)計圖中,B對應(yīng)的圓心角的度數(shù)是  

4)已知匯文初中共有5000名學(xué)生,請根據(jù)樣本估計全校最喜愛《國家寶藏》的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結(jié)論:

①當(dāng)x3時,y0;②3a+b0;③﹣1a;④4ac﹣b28a;

其中正確的結(jié)論是(

A.①③④ B.①②③ C.①②④ D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小螞蟻在9×9的小方格上沿著網(wǎng)格線運動(每小格邊長為1),一只螞蟻在C處找到食物后,要通知AB、D、E處的其他小螞蟻,我們把它的行動規(guī)定:向上或向右為正,向下或向左為負。如果從CD記為:CD(+2,-3)(第一個數(shù)表示左、右方向,第二個數(shù)表示上、下方向),那么;

1CB(  。,CE(  。,D (-4,-3),D ,+3);

2)若這只小螞蟻的行走路線為CEDBAC,請你計算小螞蟻走過的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店準(zhǔn)備購進A、B兩種型號的書包共50個進行銷售,兩種書包的進價、售價如下表所示:

書包型號

進價(元/個)

售價(元/個)

A

200

300

B

100

150

購進這50個書包的總費用不超過7300元,且購進B型書包的個數(shù)不大于A型書包個數(shù)的

1)該文具店有哪幾種進貨方案?

2)若該文具店購進的50個書包全部售完,則該文具店采用哪種進貨方案,才能獲得最大利潤?最大利潤是多少?(利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因之一.上周末,小明和三位同學(xué)嘗試用自己所學(xué)的知識檢測車速.如圖,觀測點設(shè)在A處,離益陽大道的距離(AC)30米.這時,一輛小轎車由西向東勻速行駛,測得此車從B處行駛到C處所用的時間為8秒,∠BAC75°.

(1)BC兩點的距離;

(2)請判斷此車是否超過了益陽大道60千米/小時的限制速度?

(計算時距離精確到1米,參考數(shù)據(jù):sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732, ≈1.732,60千米/小時≈16.7/)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系中,已知點P(2,-1),T(t,0)x軸上的一個動點.

(1)求點P關(guān)于原點的對稱點P′的坐標(biāo);

(2)當(dāng)t取何值時,P′TO是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C、D在數(shù)軸上的位置如圖1所示,已知AB=3,BC=2,CD=4.

(1)若點C為原點,則點A表示的數(shù)是   ;

(2)若點A、B、C、D分別表示有理數(shù)a,b,c,d,則|a﹣c|+|d﹣b|﹣|a﹣d|=   ;

(3)如圖2,點P、Q分別從A、D兩點同時出發(fā),點P沿線段AB以每秒1個單位長度的速度向右運動,到達B點后立即按原速折返;點Q沿線段CD以每秒2個單位長度的速度向左運動,到達C點后立即按原速折返.當(dāng)P、Q中的某點回到出發(fā)點時,兩點同時停止運動.

①當(dāng)點停止運動時,求點P、Q之間的距離;

②設(shè)運動時間為t(單位:秒),則t為何值時,PQ=5?

查看答案和解析>>

同步練習(xí)冊答案