【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,且拋物線經(jīng)過A(﹣1,0),C(0,﹣5)兩點,與x軸交于點B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)設(shè)點P為拋物線上的一個動點,連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時點P的坐標(biāo);
(3)在拋物線上BC段有另一個動點Q,以點Q為圓心作⊙Q,使得⊙Q與直線BC相切,在運動的過程中是否存在一個最大⊙Q?若存在,請直接寫出最大⊙Q的半徑;若不存在,請說明理由.
【答案】
(1)
解:∵對稱軸為x=2,且拋物線經(jīng)過A(﹣1,0),
∴B(5,0).
把B(5,0),C(0,﹣5)分別代入y=mx+n得 ,解得: ,
∴直線BC的解析式為y=x﹣5.
設(shè)y=a(x﹣5)(x+1),把點C的坐標(biāo)代入得:﹣5a=﹣5,解得:a=1,
∴拋物線的解析式為:y=x2﹣4x﹣5
(2)
解:①過點C作CP1⊥BC,交拋物線于點P1,如圖,
則直線CP1的解析式為y=﹣x﹣5,
由 ,解得: (舍去), ,
∴P1(3,﹣8);
②過點B作BP2⊥BC,交拋物線于P2,如圖,
則BP2的解析式為y=﹣x+5,
由 ,解得: (舍去), ,
∴P2(﹣2,7)
(3)
解:由題意可知,Q點距離BC最遠(yuǎn)時,半徑最大.平移直線BC,使其與拋物線只有一個公共點Q(即相切),設(shè)平移后的直線解析式為y=x+t,
由 ,消去y整理得x2﹣5x﹣5﹣t=0,
△=25+4(5+t)=0,解得t=﹣ ,
∴平移后與拋物線相切時的直線解析式為y=x﹣ ,且Q( ,﹣ ),
連接QC、QB,作QE⊥BC于E,如圖,
設(shè)直線y=x﹣ 與y軸的交點為H,連接HB,
則 ,
∵CH=﹣5﹣(﹣ )= ,
∴ = ,
∴ ,
∵ ,BC= ,
∴QE= ,
即最大半徑為
【解析】(1)根據(jù)對稱軸及A點坐標(biāo)得出B點坐標(biāo),從而得出直線BC解析式,再由A、B、C三點坐標(biāo)得出拋物線解析式;(2)分別過B、C兩點作BC的垂線,得出垂線的解析式,與拋物線解析式聯(lián)立解出P點;(3)平移BC到與拋物線剛好相切之處,此時的切點即為Q點,此時Q點距BC的距離最大,也就是半徑最大.由于初中階估沒學(xué)點到直線的距離公式,那么這里可以用等面積法進(jìn)行處理.設(shè)切線與y軸的交點為H,則△HBC與△QBC的面積相等,算出面積,再以BC為底,算出BC邊上的高即為答案.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的概念和二次函數(shù)的圖象的相關(guān)知識可以得到問題的答案,需要掌握一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù);二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角△ABC中,∠C=90°,AC=8,BC=6,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(陰影部分)的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,則關(guān)于x的一元一次方程ax2+bx+c=2(a≠0)的解為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠C=90°,點D為AB上的一點,以AD為直徑的⊙O與BC相切于點E,連接AE.
(1)求證:AE平分∠BAC;
(2)若AC=8,OB=18,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C,D是半圓O上的兩點,且OD∥BC,OD與AC交于點E.
(1)若∠B=80°,求∠CAD的度數(shù);
(2)若AB=8,AC=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】龜兔賽跑,它們從同一地點同時出發(fā),不久兔子就把烏龜遠(yuǎn)遠(yuǎn)地甩在后面,于是兔子便得意洋洋地躺在一棵大樹下睡起覺來.烏龜一直在堅持不懈、持之以恒地向終點跑著,兔子一覺醒來,看見烏龜快接近終點了,這才慌忙追趕上去,但最終輸給了烏龜.下列圖象中能大致反映龜兔行走的路程S隨時間t變化情況的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,連接CD.過點C作CE⊥DB,垂足為E,直線AB與CE相交于F點.
(1)求證:CF為⊙O的切線;
(2)當(dāng)BF=5,sinF= 時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com