【題目】用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)為a,內(nèi)部的格點個數(shù)為b,則S=a+(b-1).
對于正三角形網(wǎng)格中的類似問題也有對應結論:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,如圖是該正三角形格點中的兩個多邊形(設格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)為m,內(nèi)部的格點個數(shù)為n):
(1)根據(jù)圖中提供的信息填表:
m | n-1 | s | |
多邊形1 | 11 | ______ | 15 |
多邊形2 | 8 | 1 | ______ |
… | … | … | … |
(2)則S與m、m-1之間的關系為______(用含m、n的代數(shù)式表示).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=-x-3與拋物線y=x2+mx+n相交于A、B兩個不同的點,其中點A在x軸上.
(1)n=3m-9(用含m的代數(shù)式表示);
(2)若點B為該拋物線的頂點,求m、n的值;
(3)①設m=-2,當-3≤x≤0時,求二次函數(shù)y=x2+mx+n的最小值;
②若-3≤x≤0時,二次函數(shù)y=x2+mx+n的最小值為-4,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】重慶八中將于2017年整體搬遷至渝北空港新城,新校園工程建設正在如火如荼的進行.經(jīng)工程部管理人員同意,四位同學前往工地進行社會實踐活動.如圖,A、B、C是三個建筑原材料存放點,點B、C分別位于點A的正北和正東方向,AC=400米.四人分別測得∠C的度數(shù)如表:
甲 | 乙 | 丙 | 丁 | |
∠C(單位:度) | 34 | 36 | 38 | 40 |
他們又調查了各點的建筑材料存放量,并繪制了下列尚不完整的統(tǒng)計如圖、如圖:
(1)求表中∠C度數(shù)的平均數(shù);
(2)求A處的建筑原材料存放量,并將如圖補充完整;
(3)用(1)中的作為∠C的度數(shù),要將A處的全部建筑原材料沿道路AB運到B處,已知運1方建筑原材料每米的費用為0.1元,求運完全部建筑原材料所需的費用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,已知∠BAD=120°,對角線BD長為12.
(1)求菱形ABCD的周長;
(2)動點P從點A出發(fā),沿A→B的方向,以每秒1個單位的速度向點B運動;在點P出發(fā)的同時,動點Q從點D出發(fā),沿D→C→B的方向,以每秒2個單位的速度向點B運動.設運動時間為t(s).
①當PQ恰好被BD平分時,試求t的值;
②連接AQ,試求:在整個運動過程中,當t取怎樣的值時,△APQ恰好是一個直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l: 與x軸.y軸交于B,A兩點,點D,C分別為線段AB,OB的中點,連結CD,如圖,將△DCB繞點B按順時針方向旋轉角,如圖.
(1)連結OC,AD,求證∽;
(2)當0°<<180°時,若△DCB旋轉至A,C,D三點共線時,求線段OD的長;
(3)試探索:180°<<360°時,是否還有可能存在A,C,D三點共線的情況,若存在,求出此直線的表達式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某度假村擁有客房40間,該度假村在經(jīng)營中發(fā)現(xiàn)每間客房日租金x(元)與每日租出的客房數(shù)(y)有如下關系:
x | 200 | 220 | 260 | 280 |
y | 40 | 35 | 25 | 20 |
(1)觀察表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關知識求出每日租出的客房數(shù)y(間)與每間客房的日租金x(元)之間的關系式.
(2)已知租出的每間客房每日需要清潔費80元,未租出的每間客房每日需要清潔費40元.含x(x≥200)的代數(shù)式填表:
租出的客房數(shù) | ______ | 未租出的客房數(shù) | ______ |
租出的每間客房的日收益 | ______ | 所有未租出的客房每日的清潔費 | ______ |
(3)若你是該度假村的老板,你會將每間客房的日租金定為多少元,才能使度假村獲得最大日收益?最大日收益是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,AD=4cm,EF經(jīng)過對角線BD的中點O,分別交AD,BC于點E,F.
(1)求證:△BOF≌△DOE;
(2)當EF⊥BD時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明想測量斜坡旁一棵垂直于地面的樹的高度,他們先在點處測得樹頂的仰角為,然后在坡頂測得樹頂的仰角為,已知斜坡的長度為,斜坡頂點到地面的垂直高度,則樹的高度是( )
A. 20B. 30C. 30D. 40
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com