【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線y=(k>0)與矩形兩邊AB、BC分別交于D、E,且BD=2AD
(1)求k的值和點E的坐標(biāo);
(2)點P是線段OC上的一個動點,是否存在點P,使∠APE=90°?若存在,求出此時點P的坐標(biāo),若不存在,請說明理由.
【答案】(1)k="4," E(4,1);(2)存在要求的點P,坐標(biāo)為(1,0)或(3,0).
【解析】試題分析:(1)由矩形ABCD中,AB=4,BD=2AD,可得3AD=4,即可求得 AD的長,然后求得點D的坐標(biāo),即可求得K的值,繼而求得點 E的坐標(biāo);(2)首先假設(shè)存在要求的點P坐標(biāo)為(m,0),OP=m,CP=4-m,由∠APE=90,易證得△AOP∽△PCE,然后由相似三角形的對應(yīng)邊成比例,求得m的值,繼而求得此時點P的坐標(biāo).
試題解析:(9分)(1)∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD=,
又∵OA=3,所以D(,3),∵點D在雙曲線上,所以k=×3=4.
∵四邊形OABC為矩形,∴AB=OC=4,∴點E的橫坐標(biāo)為4.
把x=4代入中,得y=1,所以E(4,1).
(2)假設(shè)存在要求的點P坐標(biāo)為(m,0),OP=m,CP=4-m.
∵∠APE=90,∴∠APO+∠EPC=90,又∵∠APO+∠OAP=90, ∴∠EPC=∠OAP,
又∵∠AOP=∠PCE=90,∴△AOP∽△PCE,∴,
∴,解得:m=1或m=3.
所以,存在要求的點P,坐標(biāo)為(1,0)或(3,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)y=﹣2(x﹣m)2的圖象,下列說法不正確的是( )
A. 開口向下B. 對稱軸是x=mC. 最大值為0D. 與y軸不相交
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為4cm的等邊三角形,動點P從點A出發(fā),以2cm/s的速度沿A→C→B運動,到達B點即停止運動,PD⊥AB交AB于點D.設(shè)運動時間為x(s),△ADP的面積為y(cm2),則y與x的函數(shù)圖象正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列表格是二次函數(shù)y=ax2+bx+c(d≠0)的自變量x與函數(shù)y的一些對應(yīng)值,由此可以判斷方程ax2+bx+c=0(a≠0)的一個根在( )
x | 6.17 | 6.18 | 6.19 | 6.20 |
y=ax2+bx+c | ﹣0.03 | ﹣0.01 | 0.02 | 0.06 |
A.﹣0.01﹣0.02之間
B.0.02﹣0.06之間
C.6.17﹣6.18之間
D.6.18﹣6.19之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式mx-1>0(m≠0)的解集是x>1,則直線y=mx-1與x軸的交點坐標(biāo)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com