【題目】如圖1,已知直線l1∥l2,線段AB在直線l1上,BC垂直于l1交l2于點(diǎn)C,且AB=BC,P是線段BC上異于兩端點(diǎn)的一點(diǎn),過(guò)點(diǎn)P的直線分別交l2、l1于點(diǎn)D. E(點(diǎn)A. E位于點(diǎn)B的兩側(cè)),滿足BP=BE,連接AP、CE.
(1)求證:△ABP≌△CBE;
(2)連結(jié)AD、BD,BD與AP相交于點(diǎn)F. 如圖2.
①當(dāng)=2時(shí),求證:AP⊥BD;
②當(dāng)=n(n>1)時(shí),設(shè)△DAP的面積為S1,△EPC的面積為S2,求的值.
【答案】(1)見(jiàn)解析;(2)①見(jiàn)解析;②n+1.
【解析】
(1)根據(jù)平行和垂直得出∠ABP=∠CBE,再根據(jù)SAS證明即可;
(2)①延長(zhǎng)AP交CE于點(diǎn)H,求出AP⊥CE,證出△CPD∽△BPE,推出DP=PE,求出平行四邊形BDCE,推出CE∥BD即可;②分別用S表示出△PAD和△PCE的面積,代入求出即可.
(1)證明:∵BC⊥直線l1,
∴∠ABP=∠CBE,
在△ABP和△CBE中
∴△ABP≌△CBE(SAS);
(2)①證明:延長(zhǎng)AP交CE于點(diǎn)H,
∵△ABP≌△CBE,
∴∠APB=∠CEB,
∵∠PAB+∠APB=90°,
∴∠PAB+∠CEB=90°,
∴AH⊥CE,
∵=2,即P為BC的中點(diǎn),直線l1∥直線l2,
∴△CPD∽△BPE,
∴
∴DP=PE,
∴四邊形BDCE是平行四邊形,
∴CE∥BD,
∵AH⊥CE,
∴AP⊥BD;
②解:∵=n,
∴BC=nBP,
∴CP=(n-1)BP,
∵CD∥BE,
易得△CPD∽△BPE,
∴
設(shè)△PBE的面積S△PBE=S,則△PCE的面積S△PCE滿足,即S2=(n-1)S,
∵S△PAB=S△BCE=nS,
∴S△PAE=(n+1)S,
∵
∴S1=(n-1)S△PAE,即S1=(n+1)(n-1)S,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在射線AB的上方,且∠PAB=45°,PA=2,點(diǎn)M是射線AB上的動(dòng)點(diǎn)(點(diǎn)M不與點(diǎn)A重合),現(xiàn)將點(diǎn)P繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°到點(diǎn)Q,將點(diǎn)M繞點(diǎn)P按逆時(shí)針?lè)较蛐D(zhuǎn)60°到點(diǎn)N,連接AQ,PM,PN,作直線QN.
(1)求證:AM=QN.
(2)直線QN與以點(diǎn)P為圓心,以PN的長(zhǎng)為半徑的圓是否存在相切的情況?若存在,請(qǐng)求出此時(shí)AM的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)以點(diǎn)P為圓心,以PN的長(zhǎng)為半徑的圓經(jīng)過(guò)點(diǎn)Q時(shí),直接寫出劣弧NQ與兩條半徑所圍成的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)(為正整數(shù))都在數(shù)軸上,點(diǎn)在原點(diǎn)的左邊,且;點(diǎn)在點(diǎn)的右邊,且;點(diǎn)在點(diǎn)的左邊,且;點(diǎn)在點(diǎn)的右邊,且;…,依照上述規(guī)律,點(diǎn)所表示的數(shù)分別為 ( )
A.2018,-2019B.1009,-1010C.-2018,2019D.-1009,1009
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。
現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC中點(diǎn),過(guò)點(diǎn)D的直線GF交AC于F,交AC的平行線BG于G,DE⊥DF,交AB于E,連接BG,請(qǐng)你判斷BE+CF與EF的大小關(guān)系,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示.
(1)作出△ABC關(guān)于y軸對(duì)稱的△A′B′C′,并寫出△A′B′C′三個(gè)頂點(diǎn)的坐標(biāo).
(2)在x軸上畫出點(diǎn)P,使PA+PC最小,寫出作法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程
(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值,并求出此時(shí)方程的根;
(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點(diǎn)D為x正半軸上一動(dòng)點(diǎn)
(1)求A、B兩點(diǎn)的坐標(biāo)
(2)如圖,∠ADO的平分線交y軸于點(diǎn)C,點(diǎn) F為線段OD上一動(dòng)點(diǎn),過(guò)點(diǎn)F作CD的平行線交y軸于點(diǎn)H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數(shù)量關(guān)系,并予以證明
(3)以AO為腰,A為頂角頂點(diǎn)作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是等腰直角三角形,其中,是邊上的一點(diǎn),連接,過(guò)作交于,,且,連接并延長(zhǎng),交于點(diǎn).若四邊形的面積為,則的面積為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com