【題目】如圖,四邊形ABCD中,AD平行BC,ABC=90°,AD=2,AB=6,以AB為直徑的半O 切CD于點(diǎn)E,F(xiàn)為弧BE上一動(dòng)點(diǎn),過F點(diǎn)的直線MN為半O的切線,MN交BC于M,交CD于N,則MCN的周長(zhǎng)為(

A.9 B.10 C.3 D.2

【答案】A

【解析】

試題分析:作DHBC于H,如圖,利用平行線的性質(zhì)得ABAD,ABBC,則根據(jù)切線的判定得到AD和BC為O切線,根據(jù)切線長(zhǎng)定理得DE=DA=2,CE=CB,NE=NF,MB=MF,利用四邊形ABHD為矩形得BH=AD=2,DH=AB=6,設(shè)BC=x,則CH=x2,CD=x+2,在RtDCH中根據(jù)勾股定理得(x2)2+62=(x+2)2,解得x=,即CB=CE=,然后由等線段代換得到MCN的周長(zhǎng)=CE+CB=9.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,若∠1=2,∠3=4,則∠A=F,請(qǐng)說明理由.

解:∵∠1=2(已知)

2=DGF

∴∠1=DGF(____________)

BDCE      

∴∠3+C=180°(      )

又∵∠3=4(已知)

∴∠4+C=180°

            (同旁內(nèi)角互補(bǔ),兩直線平行)

∴∠A=F(      )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一農(nóng)民帶上若干千克自產(chǎn)的土豆進(jìn)城出售,為了方便,他帶了一些零錢備用,按市場(chǎng)價(jià)售出一些后,又降價(jià)出售,他手中持有的錢數(shù)(含備用零錢)y與售出的土豆千克數(shù)x的關(guān)系如圖所示,結(jié)合圖象回答下列問題:

1)農(nóng)民自帶的零錢是______元,降價(jià)前他每千克土豆出售的價(jià)格是______元;

2)降價(jià)后他按每千克0.8元將剩余土豆售完,這時(shí)他手中的錢(含備用零錢)是62元,求降價(jià)后的線段所表示的函數(shù)表達(dá)式并寫出它的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,花叢中有一路燈桿AB. 在燈光下,小明在D點(diǎn)處的影長(zhǎng)DE=3米,沿BD方向行走到達(dá)G點(diǎn),DG=5米,這時(shí)小明的影長(zhǎng)GH=5. 如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,BEAD于點(diǎn)EBFCD于點(diǎn)F,若∠EBF=60°,且AE=2,DF=1,則EC的長(zhǎng)為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⊙O中,直徑AB6BC是弦,∠ABC30°,點(diǎn)PBC上,點(diǎn)Q⊙O上,且OP⊥PQ

1)如圖1,當(dāng)PQ∥AB時(shí),求PQ的長(zhǎng)度;

2)如圖2,當(dāng)點(diǎn)PBC上移動(dòng)時(shí),求PQ長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接三角形ABCACB=90°,AC=2BC,CAB的垂線l交⊙O于另一點(diǎn)D,垂足為E.設(shè)P上異于A,C的一個(gè)動(dòng)點(diǎn)射線APl于點(diǎn)F,連接PCPD,PDAB于點(diǎn)G.

(1)求證:PAC∽△PDF;

(2)AB=5,,PD的長(zhǎng);

(3)在點(diǎn)P運(yùn)動(dòng)過程中,設(shè)=x,tanAFD=y(tǒng),yx之間的函數(shù)關(guān)系式.(不要求寫出x的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線yx2bxcx軸交于A(1,0)、B(4,0),與y軸交于點(diǎn)C

(1) 求拋物線的解析式

(2) 拋物線上一點(diǎn)D,滿足SDACSOAC,求點(diǎn)D的坐標(biāo)

(3) 如圖2,已知N(0,1),將拋物線在點(diǎn)AB之間部分(含點(diǎn)A、B)沿x軸向上翻折,得到圖T(虛線部分),點(diǎn)M為圖象T的頂點(diǎn).現(xiàn)將圖象保持其頂點(diǎn)在直線MN上平移,得到的圖象T1與線段BC至少有一個(gè)交點(diǎn),求圖象T1的頂點(diǎn)橫坐標(biāo)的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形有一邊上的中線長(zhǎng)恰好等于這條邊的長(zhǎng),那么稱這個(gè)三角形為“有趣三角形”,這條中線稱為“有趣中線”.已知中,,一條直角邊為3,如果是“有趣三角形”,那么這個(gè)三角形“有趣中線”的長(zhǎng)等于________

查看答案和解析>>

同步練習(xí)冊(cè)答案