【題目】如圖,在矩形中,,,分別是邊、上任意點.以線段為邊,在上方作等邊,取邊的中點,連接,則的最小值是_______

【答案】

【解析】

先證明點F、B、EH四點共圓,進而可得∠FBH=FEH=60°,再根據(jù),求得tan∠ABD=,進而可得∠ABD=60°,由此可得點B、H、D在同一直線上,則當(dāng)CH⊥BD時,CH取得最小值,最后根據(jù)等積法求得CH的最小值即可.

解:如圖,連接FHBH,BD

在矩形ABCD中,

∠FBE=∠A=∠BCD=90°,,

∴在Rt△BCD中,

∵在等邊中,點HEG的中點,

∴FH⊥GE,∠FEH=60°,

∠FHE=90°

∵∠FBE=90°,

∴點F、B、E、H四點共圓,

FBH=FEH=60°,

Rt△ABD中,,

tan∠ABD=,

∠ABD=60°,

∴點B、HD在同一直線上,

當(dāng)CH⊥BD時,CH取得最小值,

CH⊥BD,則

,

CH的最小值為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教育未來指數(shù)是為了評估教育系統(tǒng)在培養(yǎng)學(xué)生如何應(yīng)對快速多變的未來社會方面所呈現(xiàn)的效果.現(xiàn)對教育未來指數(shù)得分前35名的國家和地區(qū)的有關(guān)數(shù)據(jù)進行收集、整理、描述和分析后,給出了部分信息.

a.教育未來指數(shù)得分的頻數(shù)分布直方圖(數(shù)據(jù)分成7組:,,,,);

b.教育未來指數(shù)得分在這一組的是:61.2 62.8 64.6 65.2 67.2 67.3 67.5 68.5

c35個國家和地區(qū)的人均國內(nèi)生產(chǎn)總值和教育未來指數(shù)得分情況統(tǒng)計圖如下:



d.中國和中國香港的教育未來指數(shù)得分分別為32.968.5

(以上數(shù)據(jù)來源于《國際統(tǒng)計年鑒(2018)》和國際在線網(wǎng))

根據(jù)以上信息,回答下列問題:

1)中國香港的教育未來指數(shù)得分排名世界第______;

2)在35個國家和地區(qū)的人均國內(nèi)生產(chǎn)總值和教育未來指數(shù)得分情況統(tǒng)計圖中,包括中國香港在內(nèi)的少數(shù)幾個國家和地區(qū)所對應(yīng)的點位于虛線l的上方,請在圖中用“○”畫出代表中國香港的點;

3)在教育未來指數(shù)得分比中國高的國家和地區(qū)中,人均國內(nèi)生產(chǎn)總值的最大值約為_____萬美元;(結(jié)果保留一位小數(shù))

4)下列推斷合理的是__________.(只填序號即可)

①相較于點所代表的國家和地區(qū),中國的教育未來指數(shù)得分還有一定差距,十三五規(guī)劃提出教育優(yōu)先發(fā)展,教育強則國家強的任務(wù),進一步提高國家教育水平;

②相較于點所代表的國家和地區(qū),中國的人均國內(nèi)生產(chǎn)總值還有一定差距,中國提出決勝全面建成小康社會的奮斗目標(biāo),進一步提高人均國內(nèi)生產(chǎn)總值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=2,∠B=30°,△ABC繞點A逆時針旋轉(zhuǎn)α(0<α<120°)得到,BC,AC分別交于點DE.設(shè),的面積為,則的函數(shù)圖象大致為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點在平面直角坐標(biāo)系中,按圖中箭頭所示方向運動,第1次從原點運動到點(1,2),第2次接著運動到點(20),第3次接著運動到點(31),第4次接著運動到點(4,0)……,按這樣的運動規(guī)律,經(jīng)過第27次運動后,動點的坐標(biāo)是(  )

A.(26,0)B.(26,1)C.(27,1)D.(272)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點為,直線與拋物線交于點(在點的左側(cè))

1)求點坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記線段及拋物線在兩點之間的部分圍成的封閉區(qū)域(不含邊界)記為

①當(dāng)時,結(jié)合函數(shù)圖象,直接寫出區(qū)域內(nèi)的整點個數(shù);

②如果區(qū)域內(nèi)有2個整點,請求出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,六邊形中,,,

     

1)找出這個六邊形中所有相等的內(nèi)角_______.證明其中的一個結(jié)論.

2)如果,證明對角線,互相平分;

3)如圖,如果,,,,對角線平分對角線,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點,是以點為圓心,為半徑的圓上的動點,是線段的中點,連接,則線段的最小值是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于、兩點,,交軸于點,對稱軸是直線

(1)求拋物線的解析式及點的坐標(biāo);

(2)連接是線段上一點,關(guān)于直線的對稱點正好落在上,求點的坐標(biāo);

(3)動點從點出發(fā),以每秒2個單位長度的速度向點運動,過軸的垂線交拋物線于點,交線段于點.設(shè)運動時間為秒.

①若相似,請直接寫出的值;

能否為等腰三角形?若能,求出的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明投擲一次骰子,向上一面的點數(shù)記為,再投擲一次骰子,向上一面的點數(shù)記為,這樣就確定點的一個坐標(biāo),那么點落在雙曲線上的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案