【題目】已知:如圖,直線y=x與雙曲線交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(6,m).

(1)求雙曲線的解析式;

(2)點(diǎn)C(n,4)在雙曲線上,求△AOC的面積;

(3)在(2)的條件下,在x軸上找出一點(diǎn)P,使△AOC的面積等于△AOP的面積的三倍.請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo).

【答案】(1)y= ;(2)9;(3) P(3,0)或P(﹣3,0)

【解析】試題分析:(1)、首先根據(jù)一次函數(shù)的解析式得出點(diǎn)A的坐標(biāo),然后根據(jù)點(diǎn)A的坐標(biāo)得出反比例函數(shù)的解析式;(2)、作CDx軸于D點(diǎn),AEx軸于E點(diǎn),根據(jù)題意得出點(diǎn)C的坐標(biāo),然后根據(jù)SAOC=S四邊形COEA﹣SAOE=S四邊形COEA﹣SCOD=S梯形CDEA得出答案;(3)設(shè)P點(diǎn)坐標(biāo)為(x,0)根據(jù)△AOP的面積求出x的值,從而得出點(diǎn)P的坐標(biāo).

試題解析:解:(1∵點(diǎn)A6,m)在直線y=x上, ∴m=×6=2

∵點(diǎn)A6,2)在雙曲線上, ∴,解得k=12,

∴雙曲線的解析式為y=;

2)作CDx軸于D點(diǎn),AEx軸于E點(diǎn),如圖, ∵點(diǎn)Cn,4)在雙曲線上,

,解得n=3,即點(diǎn)C的坐標(biāo)為(3,4), ∵點(diǎn)A,C都在雙曲線上,

SOCD=SAOE=×12=6, SAOC=S四邊形COEA﹣SAOE=S四邊形COEA﹣SCOD=S梯形CDEA

SAOC=CD+AEDE=4+2×6﹣3=9;

3SAOC=9, SAOP=3

設(shè)P點(diǎn)坐標(biāo)為(x,0),而A點(diǎn)坐標(biāo)為(62),

SAOP=×2×|x|=3,解得x=±3,

P3,0)或P﹣30).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=10°,點(diǎn)POB上.以點(diǎn)P為圓心,OP為半徑畫(huà)弧,交OA于點(diǎn)P1(點(diǎn)P1與點(diǎn)O不重合),連接PP1;再以點(diǎn)P1為圓心,OP為半徑畫(huà)弧,交OB于點(diǎn)P2(點(diǎn)P2與點(diǎn)P不重合),連接P1 P2;再以點(diǎn)P2為圓心,OP為半徑畫(huà)弧,交OA于點(diǎn)P3(點(diǎn)P3與點(diǎn)P1不重合),連接P2 P3;……

請(qǐng)按照上面的要求繼續(xù)操作并探究:

P3 P2 P4=_____°;按照上面的要求一直畫(huà)下去,得到點(diǎn)Pn若之后就不能再畫(huà)出符合要求點(diǎn)Pn+1了,則n=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批自行車(chē). 男式自行車(chē)價(jià)格為/輛,女式自行車(chē)價(jià)格為/輛,要求男式自行車(chē)比女式單車(chē)多輛,設(shè)購(gòu)進(jìn)女式自行車(chē)輛,購(gòu)置總費(fèi)用為.

(1)求購(gòu)置總費(fèi)用()與女式單車(chē)()之間的函數(shù)關(guān)系式;

(2)若兩種自行車(chē)至少需要購(gòu)置輛,且購(gòu)置兩種自行車(chē)的費(fèi)用不超過(guò)元,該商場(chǎng)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A-43),點(diǎn)B-40,OA=5,以點(diǎn)O為直角頂點(diǎn),點(diǎn)C在第一象限內(nèi),作等腰直角△AOC.

1)直接寫(xiě)出點(diǎn)C坐標(biāo):

2)直接寫(xiě)出四邊形ABOC的面積:

3)在y軸找一點(diǎn)P,使得△BOP的面積等于四邊形ABOC的面積,請(qǐng)直接寫(xiě)出點(diǎn)P坐標(biāo):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)正方形ABCDE、F分別在邊BC、CD上(不與端點(diǎn)重合),∠EAF45°,EFAC交于點(diǎn)G

如圖(i),若AC平分∠EAF,直接寫(xiě)出線段EF,BE,DF之間等量關(guān)系;

如圖(ⅱ),若AC不平分∠EAF,中線段EF,BE,DF之間等量關(guān)系還成立嗎?若成立請(qǐng)證明;若不成立請(qǐng)說(shuō)明理由

2)如圖(ⅲ),矩形ABCD,AB4AD8.點(diǎn)M、N分別在邊CD、BC上,AN2,∠MAN45°,求AM的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在一個(gè)長(zhǎng)方形廣場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓形的花壇.若廣場(chǎng)的長(zhǎng)為m米,寬為n米,圓形的半徑為r米.

1)列式表示廣場(chǎng)空地的面積.

2)若廣場(chǎng)的長(zhǎng)為300米,寬為200米,圓形的半徑為30米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).

3)如圖2所示,在(2)的條件下,若在廣場(chǎng)的中間再建一個(gè)半徑為R的圓形花壇,使廣場(chǎng)的空地面積不少于廣場(chǎng)總面積的,求R的最大整數(shù)值(π3.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店出售A、B兩種商品,一月份這兩種商品的利潤(rùn)都是10萬(wàn)元,后因某種原因確定增加出售A種商品的數(shù)量,使A種商品每月利潤(rùn)的增長(zhǎng)率都為a,同時(shí)減少B種商品的數(shù)量,使B種商品每月利潤(rùn)減少的百分率也都是a,(1)分別求出二月份出售A和B兩種商品的利潤(rùn)是多少萬(wàn)元?(2)求出三月份出售A、B兩種商品的總利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2﹣2x+ca0)與x軸、y軸分別交于點(diǎn)A,B,C三點(diǎn),已知點(diǎn)A﹣2,0),點(diǎn)C0,﹣8),點(diǎn)D是拋物線的頂點(diǎn).

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

2)如圖1,拋物線的對(duì)稱軸與x軸交于點(diǎn)E,第四象限的拋物線上有一點(diǎn)P,將△EBP沿直線EP折疊,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B'落在拋物線的對(duì)稱軸上,求點(diǎn)P的坐標(biāo);

3)如圖2,設(shè)BC交拋物線的對(duì)稱軸于點(diǎn)F,作直線CD,點(diǎn)M是直線CD上的動(dòng)點(diǎn),點(diǎn)N是平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)BF,M,N為頂點(diǎn)的四邊形是菱形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長(zhǎng)方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P經(jīng)過(guò)點(diǎn)C時(shí),求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

②如圖②,把長(zhǎng)方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案