順次連結(jié)菱形各邊中點(diǎn)所得的四邊形是(    ).
A.矩形B.菱形C.正方形D.等腰梯形
A

試題分析:根據(jù)三角形的中位線定理可得中點(diǎn)四邊形的各條邊均等于菱形的對角線的一半,且平行于菱形的對角線,再根據(jù)菱形的性質(zhì)即可作出判斷.
順次連結(jié)菱形各邊中點(diǎn)所得的四邊形矩形,故選A.
點(diǎn)評:解題的關(guān)鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半;菱形的對角線互相垂直.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,沿DE折疊長方形ABCD的一邊,使點(diǎn)C落在AB邊上的點(diǎn)F處,若AD=8,且△AFD的面積為60,則△DEC的 面積為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在□ABCD中,分別延長BA、DC到點(diǎn)E、H,使得AE=AB,CH=CD,連接EH,分別交AD,BC于點(diǎn)F、G.求證:△AEF≌△CHG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在四邊形中,,,則四邊形的面積為(      )
A.36B.22C.18D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在四邊形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延長線交DC于點(diǎn)E。

求證:(1)△BFC≌△DFC; (2)AD=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在邊長為2的正方形ABCD的四邊上分別取點(diǎn)E、F、G、H、四邊形EFGH四邊的平方和EF2+FG2+GH2+HE2最小時(shí)其面積為          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形中,、相交于點(diǎn),已知,
=     (度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,D是△ABC內(nèi)一點(diǎn),BD⊥CD,AD=6,BD=4,CD=3, E、F、G、H分別是AB、AC、CD、BD的中點(diǎn),則四邊形EFGH的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列判斷:①平行四邊形的對邊平行且相等;②四條邊都相等且四個(gè)角也都相等的四邊形是正方形;③對角線互相垂直的四邊形是菱形;④對角線相等的平行四邊形是矩形;⑤對角線相等的梯形是等腰梯形。其中正確的個(gè)數(shù)有                                (      )
A.1個(gè)B.2個(gè)C.3個(gè)D.4

查看答案和解析>>

同步練習(xí)冊答案