【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,鄭州市某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機(jī)器人、陶藝制作”四門創(chuàng)客課程,為了解學(xué)生對這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對全校學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查(問卷調(diào)查表如表所示),將調(diào)查結(jié)果整理后繪制成圖1、圖2兩幅均不完整的統(tǒng)計圖表.

最受歡理的創(chuàng)客課程詞查問卷

你好!這是一份關(guān)于你喜歡的創(chuàng)客深程問卷調(diào)查表,請你在表格中選擇一個(只能選擇一個)你最喜歡的課程選項在其后空格內(nèi)打“√“,非常感謝你的合作.

請根據(jù)圖表中提供的值息回答下列問題:

1)統(tǒng)計表中的a=  ,b=  ;

2)“D”對應(yīng)扇形的圓心角為  ;

3)根據(jù)調(diào)查結(jié)果,請你估計該校2000名學(xué)生中最喜歡“數(shù)學(xué)編程”創(chuàng)客課程的人數(shù).

【答案】180,0.20;(236°;(3500

【解析】

1)根據(jù)頻數(shù)與頻率的關(guān)系列式計算即可即可;

2)根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進(jìn)行計算即可;

3)根據(jù)最喜歡數(shù)學(xué)編程創(chuàng)客課程的人數(shù)所占的百分比,即可得到人數(shù).

解:(1a=36÷0.45=80,b=16÷80=0.20

故答案為:80,0.20;

2D對應(yīng)扇形的圓心角的度數(shù)為:

故答案為:36°;

3)估計該校2000名學(xué)生中最喜歡數(shù)學(xué)編程創(chuàng)客課程的人數(shù)為:2000×0.25=500(人).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天貓商城某網(wǎng)店銷售某款藍(lán)牙耳機(jī),進(jìn)價為100在元旦即將來臨之際,開展了市場調(diào)查,當(dāng)藍(lán)牙耳機(jī)銷售單價是180元時,平均每月的銷售量是200件,若銷售單價每降低2元,平均每月就可以多售出10件.

設(shè)每件商品降價x元,該網(wǎng)店平均每月獲得的利潤為y元,請寫出yx元之間的函數(shù)關(guān)系;

該網(wǎng)店應(yīng)該如何定價才能使得平均每月獲得的利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABO的直徑,弦CDAB,垂足為H.

(1) 求證:AHAB=AC2

(2) 若過A的直線與弦CD(不含端點(diǎn))相交于點(diǎn)E,與O相交于點(diǎn)F,求證:AEAF=AC2;

(3) 若過A的直線與直線CD相交于點(diǎn)P,與O相交于點(diǎn)Q,判斷APAQ=AC2是否成立(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABO的頂點(diǎn)A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點(diǎn),ABx軸于B,且SABO=

(1)直接寫出這兩個函數(shù)的關(guān)系式;

(2)求△AOC的面積;

(3)根據(jù)圖象直接寫出:當(dāng)x為何值時,反比例函數(shù)的值小于一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1AB⊙O的直徑,點(diǎn)CAB的延長線上,AB=4,BC=2,P⊙O上半部分的一個動點(diǎn),連接OP,CP

1)求△OPC的最大面積;

2)求∠OCP的最大度數(shù);

3)如圖2,延長PO⊙O于點(diǎn)D,連接DB,當(dāng)CP=DB時,求證:CP⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)y=ax22ax3aa0)圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D

1)求點(diǎn)A,B的坐標(biāo);

2)若M為對稱軸與x軸交點(diǎn),且DM=2AM

求二次函數(shù)解析式;

當(dāng)t2xt時,二次函數(shù)有最大值5,求t值;

若直線x=4與此拋物線交于點(diǎn)E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點(diǎn)),將圖象P沿直線x=4翻折,得到圖象Q,又過點(diǎn)(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店去年8月底購進(jìn)了一批文具1160件,預(yù)計在9月份進(jìn)行試銷.購進(jìn)價格為每件10元.若售價為12/件,則可全部售出.若每漲價0.1元.銷售量就減少2件.

1)求該文具店在9月份銷售量不低于1100件,則售價應(yīng)不高于多少元?

2)由于銷量好,10月份該文具進(jìn)價比8月底的進(jìn)價每件增加20%,該店主增加了進(jìn)貨量,并加強(qiáng)了宣傳力度,結(jié)果10月份的銷售量比9月份在(1)的條件下的最低銷售量增加了m%,但售價比9月份在(1)的條件下的最高售價減少m%.結(jié)果10月份利潤達(dá)到3388元,求m的值(m10).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點(diǎn)PCD中點(diǎn),BP與半圓交于點(diǎn)Q,連接給出如下結(jié)論:;;其中正確的結(jié)論是______填寫序號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)計一個商標(biāo)圖案:先作矩形ABCD,使AB2BCAB8,再以點(diǎn)A為圓心、AD的長為半徑作半圓,交BA的延長線于F,連FC.圖中陰影部分就是商標(biāo)圖案,該商標(biāo)圖案的面積等于(

A. 48B. 416C. 38D. 316

查看答案和解析>>

同步練習(xí)冊答案