【題目】如圖1,AB⊙O的直徑,點CAB的延長線上,AB=4,BC=2,P⊙O上半部分的一個動點,連接OP,CP

1)求△OPC的最大面積;

2)求∠OCP的最大度數(shù);

3)如圖2,延長PO⊙O于點D,連接DB,當(dāng)CP=DB時,求證:CP⊙O的切線.

【答案】

【解析】

試題(1)在△OPC中,底邊OC長度固定,因此要想△OPC的面積最大,則要OC邊上的高最大;由圖形可知,當(dāng)OP⊥OC時高最大;

2)要想∠OCP的度數(shù)最大,由圖形可知當(dāng)PC⊙O相切才能滿足,根據(jù)切線的性質(zhì)即可求得;

3)連接AP,BP通過△ODB≌△BPC可求得DP⊥PC,從而求得PC⊙O的切線

試題解析:(1∵AB=4,

∴OB=2OC=OB+BC=4

△OPC中,設(shè)OC邊上的高為h,

∵SOPC=OCh=2h,

當(dāng)h最大時,SOPC取得最大值.

觀察圖形,當(dāng)OP⊥OC時,h最大,如答圖1所示:

此時h=半徑=2,SOPC=2×2=4

∴△OPC的最大面積為4

2)當(dāng)PC⊙O相切時,∠OCP最大.如答圖2所示:

∵tan∠OCP=,

∴∠OCP=30°

∴∠OCP的最大度數(shù)為30°

3)證明:如答圖3,連接AP,BP

∴∠A=∠D=∠APD=∠ABD,

∵∠AOP=∠DOB

∴AP=BD

∵CP=DB,

∴AP=CP

∴∠A=∠C

∴∠A=∠D=∠APD=∠ABD∠C,

△ODB△BPC

,

∴△ODB≌△BPCSAS),

∴∠D=∠BPC,

∵PD是直徑,

∴∠DBP=90°,

∴∠D+∠BPD=90°,

∴∠BPC+∠BPD=90°,

∴DP⊥PC

∵DP經(jīng)過圓心,

∴PC⊙O的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南崗區(qū)某中學(xué)的王老師統(tǒng)計了本校九年一班學(xué)生參加體育達(dá)標(biāo)測試的報名情況,并把統(tǒng)計的數(shù)據(jù)繪制成了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.根據(jù)圖中提供的數(shù)據(jù)回答下列問題:

(1)該學(xué)校九年一班參加體育達(dá)標(biāo)測試的學(xué)生有多少人?

(2)補全條形統(tǒng)計圖的空缺部分;

(3)若該年級有1200名學(xué)生,估計該年級參加仰臥起坐達(dá)標(biāo)測試的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的漢字聽寫大賽預(yù)賽.各參賽選手的成績?nèi)鐖D:

九(1)班:88,9192,93,93,93,9498,98100

九(2)班:89,93,93,93,95,9696,9898,99

通過整理,得到數(shù)據(jù)分析表如下:

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

九(1)班

100

m

93

93

12

九(2)班

99

95

n

93

84

1)直接寫出表中m、n的值;

2)依據(jù)數(shù)據(jù)分析表,有人說:最高分在(1)班,(1)班的成績比(2)班好,但也有人說(2)班的成績要好,請給出兩條支持九(2)班成績好的理由;

3)若從兩班的參賽選手中選四名同學(xué)參加決賽,其中兩個班的第一名直接進入決賽,另外兩個名額在四個“98的學(xué)生中任選二個,試求另外兩個決賽名額落在同一個班的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,順次連接四邊形ABCD各邊的中點得到四邊形EFGH要使四邊形EFGH為菱形,應(yīng)添加的條件是(  )

A. ABDC B. ABDC

C. ACBD D. ACBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀材料)“九宮圖”源于我國古代夏禹時期的“洛書”1所示,是世界上最早的矩陣,又稱“幻方”,用今天的數(shù)學(xué)符號翻譯出來,“洛書”就是一個三階“幻方”2所示

(規(guī)律總結(jié))觀察圖1、圖2,根據(jù)“九宮圖”中各數(shù)字之間的關(guān)系,我們可以總結(jié)出“幻方”需要滿足的條件是______;若圖3,是一個“幻方”,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實踐室及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,鄭州市某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機器人、陶藝制作”四門創(chuàng)客課程,為了解學(xué)生對這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對全校學(xué)生進行了隨機問卷調(diào)查(問卷調(diào)查表如表所示),將調(diào)查結(jié)果整理后繪制成圖1、圖2兩幅均不完整的統(tǒng)計圖表.

最受歡理的創(chuàng)客課程詞查問卷

你好!這是一份關(guān)于你喜歡的創(chuàng)客深程問卷調(diào)查表,請你在表格中選擇一個(只能選擇一個)你最喜歡的課程選項在其后空格內(nèi)打“√“,非常感謝你的合作.

請根據(jù)圖表中提供的值息回答下列問題:

1)統(tǒng)計表中的a=  ,b=  ;

2)“D”對應(yīng)扇形的圓心角為  ;

3)根據(jù)調(diào)查結(jié)果,請你估計該校2000名學(xué)生中最喜歡“數(shù)學(xué)編程”創(chuàng)客課程的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級一班為推選學(xué)生參加中國古詩詞大會的海選活動在班級內(nèi)舉行一次選拔賽成績分為A,B,C,D四個等級,并將收集到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖請你根據(jù)圖中所給出的信息解答下列各題.

求九年級一班共有多少人

在扇形統(tǒng)計圖中等級為“D”的部分所對應(yīng)扇形的圓心角為多少度

補全條形統(tǒng)計圖和扇形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,高高的路燈掛在學(xué)校操場旁邊上方,高傲而明亮.王剛同學(xué)拿起一根長的竹竿去測量路燈的高度,他走到路燈旁的一個地方,點豎起竹竿(表示),這時他量了一下竹竿的影長正好是,他沿著影子的方向走,向遠(yuǎn)處走出兩個竹竿的長度(即)到點,他又豎起竹竿(表示),這時竹竿的影長正好是一根竹竿的長度(即),此時,王剛同學(xué)抬頭若有所思地說道:噢,原來路燈有高呀.你覺得王剛同學(xué)的判斷對嗎?若對,請給出解答,若不對,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,自卸車車廂的一個側(cè)面是矩形ABCDAB3米,BC0.5米,車廂底部距離地面1.2米.卸貨時,車廂傾斜的角度θ60°,問此時車廂的最高點A距離地面多少米?(精確到1m

查看答案和解析>>

同步練習(xí)冊答案