【題目】觀察理解,并解決問題.
問題情境:如圖所示,用一些相同的小正方形,拼在一起,排成如下的一些大正方形:
問題解決:(1)完成下表:
圖序號(hào) | 1 | 2 | 3 | 4 | … | |
每一行小正方形的個(gè)數(shù) | 1 | 2 | 3 | ______ | … | ______ |
陰影小正方形的個(gè)數(shù) | 1 | 3 | 5 | ______ | … | ______ |
(2)根據(jù)圖形規(guī)律推測:______(用含的代數(shù)式表示)
(3)像(1),(2)這樣,根據(jù)某類事物的部分對象具有的某種性質(zhì),推出這類事物的所有對象具有的這種性質(zhì)的推理,叫做歸納推理.對于科學(xué)的發(fā)現(xiàn),歸納推理是十分有用的,通過觀察、實(shí)驗(yàn),對有限個(gè)對象的性質(zhì)作歸納整理,提出對某類事物帶有規(guī)律性的猜測,是科學(xué)研究的基本方法.請觀察下列等式的規(guī)律:第一個(gè)等式:;第二個(gè)等式:;第三個(gè)等式:;…猜想并直接寫出第個(gè)等式.(用含的代數(shù)式表示)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長,分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,直接寫出菱形AECF的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個(gè)觀測站,AB=2km,從A測得船C在北偏東45°的方向,從B測得船C在北偏東22.5°的方向,則船C離海岸線l的距離(即CD的長)為_____km(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)D作BC的平行線,與AB的延長線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)求證:△PBD∽△DCA;
(3)當(dāng)AB=6,AC=8時(shí),求線段PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BA=BC,對角線BD平分∠ABC,P是BD上一點(diǎn),過點(diǎn)P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:點(diǎn)A與C關(guān)于直線BD對稱.
(2)若∠ADC=90°,求證四邊形MPND為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P,Q分別從A,B兩點(diǎn)同時(shí)出發(fā),在數(shù)軸上運(yùn)動(dòng),它們的速度分別是2個(gè)單位長度/s、4個(gè)單位長度/s,它們運(yùn)動(dòng)的時(shí)間為t s.
(1)如果點(diǎn)P,Q在點(diǎn)A,B之間相向運(yùn)動(dòng),當(dāng)它們相遇時(shí),點(diǎn)P對應(yīng)的數(shù)是________;
(2)如果點(diǎn)P,Q都向左運(yùn)動(dòng),當(dāng)點(diǎn)Q追上點(diǎn)P時(shí),求點(diǎn)P對應(yīng)的數(shù);
(3)如果點(diǎn)P,Q在點(diǎn)A,B之間相向運(yùn)動(dòng),當(dāng)PQ=8時(shí),求點(diǎn)P對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初中學(xué)校欲向高一級(jí)學(xué)校推薦一名學(xué)生,根據(jù)規(guī)定的推薦程序:首先由本年級(jí)200名學(xué)生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計(jì)如圖一:
其次,對三名候選人進(jìn)行了筆試和面試兩項(xiàng)測試.各項(xiàng)成績?nèi)缦卤硭荆?/span>
測試項(xiàng)目 | 測試成績/分 | ||
甲 | 乙 | 丙 | |
筆試 | 92 | 90 | 95 |
面試 | 85 | 95 | 80 |
圖二是某同學(xué)根據(jù)上表繪制的一個(gè)不完全的條形圖.
請你根據(jù)以上信息解答下列問題:
(1)補(bǔ)全圖一和圖二;
(2)請計(jì)算每名候選人的得票數(shù);
(3)若每名候選人得一票記1分,投票、筆試、面試三項(xiàng)得分按照2:5:3的比確定,計(jì)算三名候選人的平均成績,成績高的將被錄取,應(yīng)該錄取誰?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠AOE=2∠EOC.
(1)若∠AOD=75°,求∠AOE的度數(shù).
(2)若∠DOE=36°,求∠EOC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com