【題目】在某市開展的“體育、藝術(shù)21”活動中,某校根據(jù)實際情況,決定主要開設(shè)A:乒乓球,B:籃球,C:跑步,D:跳繩這四種運(yùn)動項目.為了解學(xué)生喜歡哪一種項目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖甲、乙所示的條形統(tǒng)計圖和扇形統(tǒng)計圖.請你結(jié)合圖中的信息解答下列問題:

(1)求出所抽取的學(xué)生人數(shù),并把條形統(tǒng)計圖補(bǔ)充完整;

(2)樣本中喜歡B項目的人數(shù)百分比是 ,其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是 ;

(3)已知該校有1 000人,根據(jù)樣本估計全校喜歡跳繩的人數(shù)是多少?

圖甲 圖乙

【答案】1100,圖詳見解;(220%72°;(3280.

【解析】

(1)根據(jù)喜歡C項目的有8人,所占的百分比是8%即可求得調(diào)查的總?cè)藬?shù),進(jìn)而求得喜歡B項目的人數(shù),補(bǔ)全直方圖;

(2)1減去其它項目的百分比即可求得喜歡B項目的百分比,然后乘以360°即可求得對應(yīng)的扇形圓心角的度數(shù);

(3)利用總?cè)藬?shù)1000乘以對應(yīng)的百分比即可求解.

解:(1)抽取的總?cè)藬?shù)是:8÷8%100(),

喜歡B項目的人數(shù)是:100×(144%8%28%)20(),補(bǔ)圖如圖.

(2)喜歡B項目的人數(shù)所占的百分比是:1-8%-28%-44%=20%,

對應(yīng)的扇形圓心角度數(shù)是:360°×20%=72°;

(3)估計全校喜歡跳繩的人數(shù)為1 000×28%280()

故答案為:(1)100,圖形見解析;(2)20%,72°;(3)280.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形OABC的頂點(diǎn)O(0,0),B(2,2),若菱形繞點(diǎn)O逆時針旋轉(zhuǎn),每秒旋轉(zhuǎn)45°,則第60秒時,菱形的對角線交點(diǎn)D的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在x軸的正半軸上,以O(shè)A為直徑作⊙P,C是⊙P上一點(diǎn),過點(diǎn)C的直線y= x+ 與x軸,y軸分別相交于點(diǎn)D,點(diǎn)E,連接AC并延長與y軸相交于點(diǎn)B,點(diǎn)B的坐標(biāo)為(0, ).

(1)求證:OE=CE;
(2)請判斷直線CD與⊙P位置關(guān)系,證明你的結(jié)論,并求出⊙P半徑的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)90°后得到△A1OB1

(1)畫出△A1OB1;
(2)在旋轉(zhuǎn)過程中點(diǎn)B所經(jīng)過的路徑長為;
(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批名牌襯衣,平均每天可售出20件,每件襯衣盈利40元.為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衣降價1元,商場平均每天可多售出2件.
(1)若商場平均每天盈利1200元,每件襯衣應(yīng)降價多少元?
(2)若要使商場平均每天的盈利最多,請你為商場設(shè)計降價方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點(diǎn),∠CAD=110°,則∠B的度數(shù)是( )

A.110°
B.70°
C.60°
D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的面積是12,點(diǎn)DE、FG分別是BC、ADBE、CE的中點(diǎn),則四邊形AFDG的面積是( )

A. 4.5B. 5C. 5.5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,數(shù)軸上的點(diǎn)ABC依次表示數(shù)-2,x4.某同學(xué)將刻度尺如圖2放置,使刻度尺上的數(shù)字0對齊數(shù)軸上的點(diǎn)B,發(fā)現(xiàn)點(diǎn)A對齊刻度1.8cm,點(diǎn)C對齊刻度5.4cm

1AC=    個單位長度;由圖可知數(shù)軸上的一個單位長度對應(yīng)刻度尺上的    cm;數(shù)軸上的點(diǎn)B表示數(shù)    ;

2)已知T是數(shù)軸上一點(diǎn)(不與點(diǎn)A、點(diǎn)B、點(diǎn)C重合),點(diǎn)P表示的數(shù)是t,點(diǎn)P是線段BT的三等分點(diǎn),且TP=2BP

如圖3,當(dāng)-2t4時,試試猜想線段CTAP的數(shù)量關(guān)系,并說明理由;

|2BT3AP|=1,請直接寫出所有滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列證明過程,并在括號內(nèi)填上依據(jù).

如圖,點(diǎn)EAB上,點(diǎn)FCD上,∠1=∠2,∠B=∠C,求證ABCD

證明:∵∠1=∠2(已知),∠1=∠4   ),

∴∠2   (等量代換),

   BF   ),

∴∠3=∠      ).

又∵∠B=∠C(已知),

∴∠3=∠B   ),

ABCD   ).

查看答案和解析>>

同步練習(xí)冊答案