【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結論:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結論是 .(填寫所有正確結論的序號)

【答案】①②③④.

【解析】

試題分析:△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF 可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以,又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正確.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】袋子中裝有2個黑球和3個白球,這些球除了顏色不同外形狀、大小、質地等完全相同,在看不到球的條件下,隨機地一次從袋子中摸出三個球.下列事件是必然事件的是( 。

A.摸出的三個球中至少有一個球是白球

B.摸出的三個球中至少有一個球是黑球

C.摸出是三個球中至少有兩個球的黑球

D.摸出的單個球中至少有兩個球是白球

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016山東濰坊第22題)如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在國家房貸政策調控下,某樓盤為促銷打算降價銷售,原價a元/平方米的樓房,按八五折銷售,人們購買該樓房每平方米可節(jié)省元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a+b=3,ab=2,則a2 +b2的值是( )

A. 2.5 B. 5 C. 10 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形的三邊長a,b,c滿足2ab=(a+b)2﹣c2,則此三角形是(  )

A. 鈍角三角形 B. 銳角三角形 C. 直角三角形 D. 等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:3(2a2b﹣ab2)﹣2(﹣ab2+4a2b)+ab2 , 其中a=﹣2,b=3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式正確的是(  )

A. 6a25a2a2B. 2a22a2

C. 2a1)=﹣2a+1D. a+b2a2+b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一塊直角三角形的綠地,量得直角邊BC6cm,AC8cm,現(xiàn)在要將原綠地擴充后成等腰三角形,且擴充的部分是以AC為直角邊的直角三角形,求擴充后的等腰三角形綠地的周長.

查看答案和解析>>

同步練習冊答案