【題目】在△ABC中,若O為BC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動,則的最小值為________.
【答案】10
【解析】
設(shè)點(diǎn)M為DE的中點(diǎn),點(diǎn)N為FG的中點(diǎn),連接MN,則MN、PM的長度是定值,利用三角形的三邊關(guān)系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出結(jié)論.
設(shè)點(diǎn)M為DE的中點(diǎn),點(diǎn)N為FG的中點(diǎn),連接MN交半圓于點(diǎn)P,此時PN取最小值.
∵DE=4,四邊形DEFG為矩形,
∴GF=DE,MN=EF,
∴MP=FN=DE=2,
∴NP=MNMP=EFMP=1,
∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.
故答案為:10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3).
(1)求這個二次函數(shù)的表達(dá)式;
(2)若P是第四象限內(nèi)這個二次函數(shù)的圖象上任意一點(diǎn),PH⊥x軸于點(diǎn)H,與BC交于點(diǎn)M,連接PC.
①求線段PM的最大值;
②當(dāng)△PCM是以PM為一腰的等腰三角形時,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三個頂點(diǎn)的坐標(biāo)分別.
(1)畫出;
(2)以B為位似中心,將放大到原來的2倍,在右圖的網(wǎng)格圖中畫出放大后的圖形△;
(3)寫出點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo):___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0 (a≠0)有兩個不相等的實(shí)數(shù)根,且其中一個根為另一個根的2倍,那么稱這樣的方程為“倍根方程”.例如,方程x2-6x+8=0的兩個根是2和4,則方程x2-6x+8=0就是“倍根方程”.
(1)若一元二次方程x2-3x+c=0是“倍根方程”,則c= ;
(2)若(x-2) (mx-n)=0(m≠0)是“倍根方程”,求代數(shù)式4m2-5mn+n2的值;
(3)若方程ax2+bx+c=0 (a≠0)是倍根方程,且相異兩點(diǎn)M(1+t,s),N(4-t,s),都在拋物線y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周老師家的紅心獼猴桃深受廣大顧客的喜愛,獼猴桃成熟上市后,她記錄了15天的銷售數(shù)量和銷售單價,其中銷售單價y(元/千克)與時間第x天(x為整數(shù))的數(shù)量關(guān)系如圖所示,日銷量P(千克)與時間第x天(x為整數(shù))的部分對應(yīng)值如下表所示:
時間第x天 | 1 | 3 | 5 | 7 | 10 | 11 | 12 | 15 |
日銷量P(千克) | 320 | 360 | 400 | 440 | 500 | 400 | 300 | 0 |
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)從你學(xué)過的函數(shù)中,選擇合適的函數(shù)類型刻畫P隨x的變化規(guī)律,請直接寫出P與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)在這15天中,哪一天銷售額達(dá)到最大,最大銷售額是多少元;
(4)周老師非常熱愛公益事業(yè),若在前5天,周老師決定每銷售1千克紅心獼猴桃就捐獻(xiàn)a元給“環(huán)保公益項(xiàng)目”,且希望每天的銷售額不低于2800元以維持各種開支,求a的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若O為BC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動,則的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點(diǎn)A順時針旋轉(zhuǎn)α(0°<α<180°)后與⊙O相切,則α的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為3cm,點(diǎn)N在AC邊上,AN=1cm.△ABC邊上的動點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C運(yùn)動,到達(dá)點(diǎn)C時停止.設(shè)點(diǎn)M運(yùn)動的路程為xcm,MN的長為ycm.
小西根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小西的探究過程,請補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、測量,得到了y與x的幾組對應(yīng)值;
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
y/cm | 1 | 0.87 | 1 | 1.32 | 2.18 | 2.65 | 2.29 | 1.8 | 1.73 | 1.8 | 2 |
(2)在平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn),畫出該函數(shù)的圖象;
(3) 結(jié)合函數(shù)圖象,解決問題:當(dāng)MN=2cm時,點(diǎn)M運(yùn)動的路程為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件20元,售價為每件30元,每月可賣出180件,如果該商品計劃漲價銷售,但每件售價不能高于35元,設(shè)每件商品的售價上漲x元(x為整數(shù))時,月銷售利潤為y元.
(1)分析數(shù)量關(guān)系填表:
每臺售價(元) | 30 | 31 | 32 | …… | 30+x |
月銷售量(件) | 180 | 170 | 160 | …… | _____ |
(2)求y與x之間的函數(shù)解析式和x的取值范圍
(3)當(dāng)售價x(元/件)定為多少時,商場每月銷售這種商品所獲得的利潤y(元)最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com