【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0 (a≠0)有兩個不相等的實數(shù)根,且其中一個根為另一個根的2,那么稱這樣的方程為倍根方程”.例如,方程x2-6x+8=0的兩個根是24,則方程x2-6x+8=0就是倍根方程”.

(1)若一元二次方程x2-3x+c=0倍根方程”,c=

(2)(x-2) (mx-n)=0(m≠0)倍根方程”,求代數(shù)式4m2-5mn+n2的值;

(3)若方程ax2+bx+c=0 (a≠0)是倍根方程,且相異兩點M(1+t,s),N(4-t,s),都在拋物線y=ax2+bx+c上,求一元二次方程ax2+bx+c=0 (a≠0)的根.

【答案】(1)c=2;(2)4m2-5mn+n2=0(3),.

【解析】

(1)由一元二次方程x2-3xc=0倍根方程,得到x1+2x1=3,2x12=c,求解即可得到答案;

(2)方程(x-2) (mxn)=0的解為x1=2,x2=,因為兩個根是2倍關(guān)系,所以x2=14,分別得到m,n的關(guān)系式,代入代數(shù)式中即可得解;

(3)方程ax2bxc=0 是倍根方程,得到其解x1=2x2,由已知條件得到拋物線的對稱軸為直線x,即可求出方程的根x1,x2.

(1)∵元二次方程x2-3xc=0倍根方程”,

x1+x2=3,x1x2=c,即x1+2x1=3,2x12=c,

解得:c=2;

(2)∵是倍根方程,且,

由題意可知,

,

當(dāng)時,=0,

當(dāng)時,=0,

∴4m2-5mnn2=0;

(3)∵方程是倍根方程,不妨設(shè)

相異兩點都在拋物線上,

拋物線的對稱軸為,

,

,

的兩根分別為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,BAC=100°,點D在BC邊上,ABD和AFD關(guān)于直線AD對稱,FAC的平分線交BC于點G,連接FG.

(1)求DFG的度數(shù);

(2)設(shè)BAD=θ,

當(dāng)θ為何值時,DFG為等腰三角形;

DFG有可能是直角三角形嗎?若有,請求出相應(yīng)的θ值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1.ABC中,∠C為直角,AC=6,BC=8,D,E兩點分別從B,A開始同時出發(fā),分別沿線段BC,ACC點勻速運動,到C點后停止,他們的速度都為每秒1個單位,請問D點出發(fā)2秒后,CDE的面積為多少?

(2)如圖2,將(1)中的條件C為直角改為∠C為鈍角,其他條件不變,請問是否仍然存在某一時刻,使得CDE的面積為ABC面積的一半?若存在,請求出這一時刻,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1:在四邊形ABCD,AB=AD,BAD=120 ,B=ADC=90°.EF分別是 BC,CD 上的點。且∠EAF=60° . 探究圖中線段BEEF,FD 之間的數(shù)量關(guān)系。 小王同學(xué)探究此問題的方法是,延長 FD 到點 G,使 DG=BE,連結(jié) AG,先證明ABE≌△ADG, 再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_________

探索延伸:如圖2,若四邊形ABCD,AB=AD,B+D=180° .E,F 分別是 BC,CD 上的點,且∠EAF=BAD,上述結(jié)論是否仍然成立,并說明理由;

實際應(yīng)用:如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A,艦艇乙在指揮中心南偏東 70°B,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以55 海里/小時的速度前進(jìn),艦艇乙沿北偏東 50°的方向以 75 海里/小時的速度前進(jìn)2小時后, 指揮中心觀測到甲、乙兩艦艇分別到達(dá) E,F ,且兩艦艇之間的夾角為70° ,試求此時兩艦 艇之間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,把一個點的橫、縱坐標(biāo)都乘以同一個實數(shù),然后將得到的點先向右平移個單位,再向上平移個單位,得到點

1)若,,,則點坐標(biāo)是_____;

2)對正方形及其內(nèi)部的每個點進(jìn)行上述操作,得到正方形及其內(nèi)部的點,其中點的對應(yīng)點分別為.求;

3)在(2)的條件下,己知正方形內(nèi)部的一個點經(jīng)過上述操作后得到的對應(yīng)點與點重合,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長為1,寬為a的矩形紙片(),如圖那樣折一下,剪下一個邊長等于矩形寬度的正方形(稱為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個邊長等于此時矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.若在第n此操作后,剩下的矩形為正方形,則操作終止.當(dāng)n=3時,a的值為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,點D在直線BC上(不與點BC重合),線段ADA點逆時針方向旋轉(zhuǎn)∠BAC的大小,得線段AE,連接DE、CE.探索∠BCE與∠BAC的大小關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

用配方法可以解一元二次方程,還可以用它來解決很多問題.例如:因為3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有當(dāng)a=0時,才能得到這個式子的最小值1.同樣,因為-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0時,才能得到這個式子的最大值1
1)當(dāng)x=___時,代數(shù)式3x+32+4有最小____(填寫大或。┲禐____
2)當(dāng)x=_____時,代數(shù)式-2x2+4x+3有最大____(填寫大或。┲禐____.

3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當(dāng)花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案