【題目】在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別是AB、BC的中點(diǎn),過(guò)點(diǎn)C作CF∥AB,與DE的延長(zhǎng)線并交于點(diǎn)F,連接BF.
(1)試判斷四邊形CDBF的形狀,并說(shuō)明理由;
(2)若CD=5,sin∠CAB=,過(guò)點(diǎn)C作CH⊥BF,垂足為H點(diǎn),試求CH的長(zhǎng).
【答案】(1)四邊形CDBF是菱形,見(jiàn)解析;(2)CH=.
【解析】
(1)證出DE是△ABC的中位線,得出DE∥AC,AC=2DE,證出四邊形CDBF是平行四邊形,由直角三角形的性質(zhì)得出CD=AB=BD,即可得出四邊形CDBF是菱形;
(2)由直角三角形的性質(zhì)得出AB=2CD=10,求出BC=6,由勾股定理得出AC==8,得出DE=AC=4,由菱形的性質(zhì)得出DF=2DE=8,BF=CD=5,由菱形CDBF的面積即可得出結(jié)果.
解:(1)四邊形CDBF是菱形,理由如下:
∵點(diǎn)D、E分別是AB、BC的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥AC,AC=2DE,
∴DF∥AC,
∵CF∥AB,
∴四邊形CDBF是平行四邊形,
∵∠ACB=90°,點(diǎn)D是AB的中點(diǎn),
∴CD=AB=BD,
∴四邊形CDBF是菱形;
(2)如圖所示:
∵∠ACB=90°,CD=5,
∴AB=2CD=10,
∵sin∠CAB==,
∴BC=6,
∴AC==8,
∴DE=AC=4,
∵四邊形CDBF是菱形,
∴DF=2DE=8,BF=CD=5,
∵菱形CDBF的面積=BF×CH=×BC×DF=×6×8=24,
∴CH=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,AB=4,點(diǎn)D是邊AC上一點(diǎn),且AD=1,點(diǎn)E是AB邊上一點(diǎn),連接DE,以線段DE為直角邊作等腰直角△DEF(D、E、F三點(diǎn)依次呈逆時(shí)針?lè)较颍,?dāng)點(diǎn)F恰好落在BC邊上時(shí),則AE的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,AB=AC,∠ACB=75°,BC=1,則陰影部分的面積是( 。
A.1+πB.πC.πD.1+π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)原點(diǎn)的直線與反比例函數(shù)交于點(diǎn),與反比例函數(shù) 交于點(diǎn),過(guò)點(diǎn)作軸的垂線,過(guò)點(diǎn)作軸的垂線,兩直線交于點(diǎn),若的面積為,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題發(fā)現(xiàn)
(1)如圖①,為邊長(zhǎng)為的等邊三角形,是邊上一點(diǎn)且平分的面積,則線段的長(zhǎng)度為____;
問(wèn)題探究
(2)如圖②,中,點(diǎn)在上,點(diǎn)在上,若平分的面積,且最短,請(qǐng)你畫出符合要求的線段,并求出此時(shí)與的長(zhǎng)度.
問(wèn)題解決
(3)如圖③,某公園的一塊空地由三條道路圍成,即線段,已知米,米,的圓心在邊上,現(xiàn)規(guī)劃在空地上種植草坪,并的中點(diǎn)修一條直路(點(diǎn)在 上).請(qǐng)問(wèn)是否存在,使得平分該空地的面積?若存在,請(qǐng)求出此時(shí)的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是BC上一點(diǎn),連接AE,點(diǎn)F是AE上一點(diǎn),連接FC,若∠BAE=∠EFC,CF=CD,AB:BC=3:2,AF=4,則FC的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)模擬測(cè)試中,六名學(xué)生的數(shù)學(xué)成績(jī)?nèi)缦卤硭,下列關(guān)于這組數(shù)據(jù)描述正確的是( )
姓名 | 小紅 | 小明 | 小東 | 小亮 | 小麗 | 小華 |
成績(jī)(分) | 110 | 106 | 109 | 111 | 108 | 110 |
A.眾數(shù)是110B.方差是16
C.平均數(shù)是109.5D.中位數(shù)是109
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生對(duì)博鰲論壇會(huì)的了解情況,某中學(xué)隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果記作“非常了解,了解,了解較少,不了解.”四類分別統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次共調(diào)查了______名學(xué)生;扇形統(tǒng)計(jì)圖中所在的扇形的圓心角度數(shù)為______;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1600名學(xué)生,請(qǐng)你估計(jì)對(duì)博鰲論壇會(huì)的了解情況為“非常了解”的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與軸交于點(diǎn)、點(diǎn),與軸交于點(diǎn),頂點(diǎn)的橫坐標(biāo)為,對(duì)稱軸交軸交于點(diǎn),交與點(diǎn) .
(1)求頂點(diǎn)的坐標(biāo);
(2)如圖2所示,過(guò)點(diǎn)的直線交直線于點(diǎn),交拋物線于點(diǎn).
①若直線將分成的兩部分面積之比為,求點(diǎn)的坐標(biāo);
②若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com