如圖.△ABC中AB=6cm,BC=4cm,∠B=60°,動點P、Q分別從A、B兩點同時出發(fā).分別沿AB、BC方向勻速移動;它們的速度分別為2cm/s和1cm/s.當點P到達點B時.P、Q兩點停止運動.設點P的運動時間為t(s).當t為________時,△PBQ為直角三角形.

秒或
分析:用t表示出AP、BQ、BP,然后分①∠BQP=90°,②∠BPQ=90°兩種情況,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半列式計算即可得解;
解答:(1)根據(jù)題意,得AP=2tcm,BQ=tcm,
∵AB=6cm,
∴BP=(6-2t) cm,
若△PBQ是直角三角形,則∠BQP=90°或∠BPQ=90°,
①當∠BQP=90°時,∵∠B=60°,
∴∠BPQ=90°-60°=30°,
∴BQ=BP,
即t=(6-2t),
解得t=(秒).
②當∠BPQ=90°時,∵∠B=60°,
∴∠BQP=90°-60°=30°,
∴BP=BQ,
即6-2t=t,
解得t=(秒),
∴當t=秒或t=秒時,△PBQ是直角三角形;
故答案為:秒或秒.
點評:本題考查了一元二次方程的應用,解題的關鍵是根據(jù)實際問題分兩種情況討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,△ABC中AB的垂直平分線交AC、AB于點P、Q,若PC=2PA,AB=2
2
,∠A=45°,則PC=
 
,BC=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經過B、M兩點的⊙O精英家教網交BC于G,交AB于點F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當BC=6,cosC=
14
,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,△ABC中AB=AC,AB的垂直平分線交AC于點D.若∠A=40°,則∠DBC=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,△ABC中AB=AC,∠A=36°,AB的垂直平分線MN交AC于D,下列四個結論正確的是
①②③④
.(填序號)
①△AMD≌△BMD;②AD=BD=BC;③△ABC∽△BDC; ④AD2=CD•AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,△ABC中AB=AC,EB=BD=DC=CF,∠A=40°,則∠EDF的度數(shù)是
70
度.

查看答案和解析>>

同步練習冊答案