【題目】如圖,O是正△ABC內(nèi)一點,OA=6,OB=8,OC=10,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點O與O′的距離為6;③∠AOB=150°;④S△BOC=12+6; ⑤S四邊形AOBO′=24+12.其中正確的結(jié)論是_____.(填序號)
【答案】①③
【解析】
證明△BO′A≌△BOC即可說明△BO'A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到,①正確;根據(jù)旋轉(zhuǎn)的性質(zhì)可知△BOO′是等邊三角形,則點O與O'的距離為8,②錯誤;根據(jù)勾股定理的逆定理得到△AOO′是直角三角形,求得Rt△AOO′面積為×6×8=24,又等邊△BOO′面積為×8×4=16,得到四邊形AOBO'的面積為24+16,⑤錯誤;求得∠AOB=∠AOO′+∠BOO′=90°+60°=150°,③正確;過B作BE⊥AO交AO的延長線于E,根據(jù)三角形的面積公式即可得到S△BOC=S四邊形AOBO′﹣S△AOB=24+16﹣12=12+16,故④錯誤.
在△BO′A和△BOC中,
,
∴△BO′A≌△BOC(SAS).
∴O′A=OC,
∴△BO'A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到,①正確;
如圖1,連接OO′,根據(jù)旋轉(zhuǎn)的性質(zhì)可知△BOO′是等邊三角形,
∴點O與O'的距離為8,②錯誤;
在△AOO′中,AO=6,OO′=8,AO′=10,
∴△AOO′是直角三角形,∠AOO′=90°.
∴Rt△AOO′面積為×6×8=24,
又等邊△BOO′面積為×8×4=16,
∴四邊形AOBO'的面積為24+16,⑤錯誤;
∠AOB=∠AOO′+∠BOO′=90°+60°=150°,③正確;
過B作BE⊥AO交AO的延長線于E,
∵∠AOB=150°,
∴∠BOE=30°,
∵OB=8,
∴BE=4,
∴S△AOB=×4×6=12,
∴S△BOC=S四邊形AOBO′﹣S△AOB=24+16﹣12=12+16,故④錯誤,
故答案為:①③.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ABC,點D為斜邊AB上的中點,點E在線段BD上,連結(jié)CD,CE,作AH⊥CE,垂足為H,交CD于點G,AH的延長線交BC于點F.
(1)求證:△ADG≌△CDE.
(2)若點H恰好為CE的中點,求證:∠CGF=∠CFG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上,如果BC=5,△ABC的面積是10,那么這個正方形的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點E,F分別在AB,CD上,且,連接EF交BD于點O連接AO.若,,則的度數(shù)為( )
A.50°B.55°C.65°D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線分別與軸,軸交于兩點.
(1)求線段AB的長度;
(2)若點在第二象限,且△為等腰直角三角形,求點的坐標;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com