【題目】等腰Rt△ABC,點(diǎn)D為斜邊AB上的中點(diǎn),點(diǎn)E在線段BD上,連結(jié)CD,CE,作AH⊥CE,垂足為H,交CD于點(diǎn)G,AH的延長(zhǎng)線交BC于點(diǎn)F.
(1)求證:△ADG≌△CDE.
(2)若點(diǎn)H恰好為CE的中點(diǎn),求證:∠CGF=∠CFG.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)根據(jù)已知條件可得出AD=CD=BD,∠CGH+∠GCH=∠AGD+∠GAD=90°,繼而得出∠GAD=∠GCH,從而結(jié)論得以證明.
(2)由已知條件可得,∠CAH=∠EAH,繼而得出∠AGD=∠=CGH=∠CFG.
解:(1)在等腰Rt△ABC中,
∵ 點(diǎn)D為斜邊AB上的中點(diǎn)
∴ CD=AB,CD⊥AB
∵AD=AB
∴AD=CD
∵ CD⊥AB
∴ ∠ADG=∠CDE=90°
∵AH⊥CE
∴∠CGH+∠GCH=90°
∵∠AGD+∠GAD=90°
又∵∠AGD=∠CGH
∴∠GAD=∠GCH
在△△ADG和△CDE中
∵∠ADG=∠CDE=90°,AD=CD,∠GAD=∠GCH
∴△ADG≌△CDE…
(2)∵AH⊥CE,點(diǎn)H為CE的中點(diǎn)
∴AC=AE
∴∠CAH=∠EAH
∵∠CAH+∠AFC=90°
∠EAH+∠AGD=90°
∴∠AFC=∠AGD
∵∠AGD=∠CGH
∴∠AFC=∠CGH
即∠CGF=∠CFG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在已知中,分別是的中點(diǎn),求證.
利用第題的結(jié)論,解決下列問(wèn)題:
如圖,在四邊形中,,點(diǎn)分別在上,點(diǎn)分別為的中點(diǎn),連接,求長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有若干個(gè)邊長(zhǎng)為2的正方形,若正方形的一個(gè)頂點(diǎn)是正方形Ⅰ的中心O1,如圖所示,類似的正方形Ⅲ的一個(gè)頂點(diǎn)是正方形Ⅱ的中心O2,并且正方形Ⅰ與正方形Ⅲ不重疊,如果若干個(gè)正方形都按這種方法拼接,需要m個(gè)正方形能使拼接處的圖形的陰影部分的面積等于一個(gè)正方形的面積.現(xiàn)有一拋物線y=mx2+nx+3,其頂點(diǎn)在x軸上,則該拋物線的對(duì)稱軸為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中AD⊥BC,垂足為D,交y軸于點(diǎn)H,直線BC的解析式為y=-2x+4.點(diǎn)H(0,2),
(1)求證:△AOH≌△COB;
(2)求D點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OC是∠AOB的平分線,點(diǎn)P在OC上且OP=4,∠AOB=60°,過(guò)點(diǎn)P的動(dòng)直線DE交OA于D,交OB于E,那么=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分別是AB邊上的中線和高.
(1)求證:AE=ED;
(2)若AC=2,求△CDE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為營(yíng)造濃厚的創(chuàng)建全國(guó)文明城市氛圍,東營(yíng)市某中學(xué)委托制衣廠制作“最美東營(yíng)人”和“最美志愿者”兩款文化衫.若制作“最美東營(yíng)人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營(yíng)人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美東營(yíng)人”和“最美志愿者”兩款文化衫每件各多少元?
(2)若該中學(xué)要購(gòu)進(jìn)“最美東營(yíng)人”和“最美志愿者”兩款文化衫共90件,總費(fèi)用少于1595元,并且“最美東營(yíng)人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,那么該中學(xué)有哪幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=6,OB=8,OC=10,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為6;③∠AOB=150°;④S△BOC=12+6; ⑤S四邊形AOBO′=24+12.其中正確的結(jié)論是_____.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com