【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點C為 (-1,0) .如圖所示,B點在拋物線y=x2+x-2圖象上,過點B作BD⊥x軸,垂足為D,且B點橫坐標(biāo)為-3.
(1)求證:△BDC≌△COA;
(2)求BC所在直線的函數(shù)關(guān)系式;
(3)拋物線的對稱軸上是否存在點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.
【答案】(1)先根據(jù)同角的余角相等證得,又為等腰直角三角形,可得.即可證得結(jié)論;(2);(3)
【解析】試題分析:(1)先根據(jù)同角的余角相等證得,又為等腰直角三角形,可得.即可證得結(jié)論;
(2)由C點坐標(biāo)可得BD=CO=1,即可得到B點坐標(biāo) 設(shè)所在直線的函數(shù)關(guān)系式為,根據(jù)待定系數(shù)法即可求得結(jié)果;
(3)先求得拋物線的對稱軸為直線.再分以為直角邊,點為直角頂點;以為直角邊,點為直角頂點,兩種情況根據(jù)一次函數(shù)的性質(zhì)求解即可.
(1)∵, ,
∴.
∵為等腰直角三角形,
∴.
在和中
∴(AAS).
(2)∵C點坐標(biāo)為,
∴BD=CO=1.
∵B點的橫坐標(biāo)為,
∴B點坐標(biāo)為.
設(shè)所在直線的函數(shù)關(guān)系式為,
則有,解得
∴BC所在直線的函數(shù)關(guān)系式為.
(3)存在.
=,
∴對稱軸為直線.
若以為直角邊,點為直角頂點,對稱軸上有一點,使.
∵
∴點為直線與對稱軸直線的交點.
由題意得,解得
∴.
若以為直角邊,點為直角頂點,對稱軸上有一點,使,
過點作,交對稱軸直線于點.
∵CD=OA,
∴A(0,2).
易求得直線的解析式為,
由得,∴.
∴滿足條件的點有兩個,坐標(biāo)分別為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù):-22,-2.5,14,0,|-4|,在數(shù)軸上畫出這些數(shù)所對應(yīng)的點,且在這些點的上方標(biāo)出對應(yīng)的數(shù),并將它們用“>”連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一架直升飛機從高度1000m的位置開始,先以18m/s的速度上升2min,后以15m/s的速度下降3min,這時直升飛機所在的高度是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),再選取一個你喜歡的數(shù)代替x,并求原代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中,最適合采用抽樣調(diào)查的是( )
A.對旅客上飛機前的安檢
B.了解全班同學(xué)每周體育鍛煉的時間
C.調(diào)查奧運會金牌獲得者的興奮劑使用情況
D.調(diào)查我國居民對汽車廢氣污染環(huán)境的看法
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公司員工分別住在A,B,C三個住宅區(qū),A區(qū)有30人,B區(qū)有15人,C區(qū)有10人.三個區(qū)在同一條直線上,該公司的接送車打算在此間設(shè)一個停靠點,為使所有員工步行到停靠點的路程之和最小,那么?奎c的位置應(yīng)設(shè)在哪個區(qū)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點O,E是BC的中點,以下說法錯誤的是( 。
A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com