【題目】直線y=kx+3和x軸、y軸的交點分別為B、C,∠OBC=30°,點A的坐標(biāo)是(,0),另一條直線經(jīng)過點A、C.
(1)求點B的坐標(biāo)及k的值;
(2)求證:AC⊥BC;
(3)點M為直線BC上一點(與點B不重合),設(shè)點M的橫坐標(biāo)為x,△ABM的面積為S.
①求S與x的函數(shù)關(guān)系式;
②當(dāng)S=6時,求點M的坐標(biāo).
【答案】(1)B(3,0),k=﹣;(2)見解析;(3)①S=;②點M的坐標(biāo)為(0,3)或(6,-3).
【解析】
(1)直線y=kx+3和y軸的交點為C,則點C(0,3),則BC=6,OB=3,則點B(3,0),即可求解;
(2)OA=,OC=3,則AC=2,則∠ACO=30°,即可求解;
(3)①點M(x,-x+3),S=×AB×|yM|即可求解;
②將S=6代入①中的函數(shù)關(guān)系式,即可求解.
解:(1)直線y=kx+3和y軸的交點為C,則點C(0,3),
則BC=6,OB=3,
則點B(3,0),
將點B的坐標(biāo)代入y=kx+3得:0=3k+3,
解得:k= -;
(2)在Rt△AOC中,OA=,OC=3,由勾股定理得AC=2,
∴∠ACO=30°,
∵∠OBC=30°,
∴∠BCO=60°,
∴∠ACB=∠ACO+∠BCO=90°,
∴AC⊥BC;
(3)①直線BC的表達(dá)式為:y=﹣x+3,則點M(x,﹣x+3),
S=×AB×|yM|=×4×|﹣x+3|,即:S=;
②當(dāng)S=6時,
∵S=
∴或
解得:x=0或x=6,
故點M的坐標(biāo)為(0,3)或(6,-3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ECD均為等邊三角形,B、C、D三點在一直線上,AD、BE相交于點F,DF=3,AF=4,則線段FE的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),且與y
軸相交于負(fù)半軸。給出四個結(jié)論:①;②;③;④ ,其中正確結(jié)論的序
號是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知AB=24cm,CD=8cm.
(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)
(2)求殘片所在圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種品牌的手機,每部進(jìn)貨價為2500元.市場調(diào)研表明:當(dāng)銷售價為2900元時,平均每天能售出8部;而當(dāng)銷售價每降低50元時,平均每天就能多售出4部.
(1)當(dāng)售價為2800元時,這種手機平均每天的銷售利潤達(dá)到多少元?
(2)若設(shè)每部手機降低x元,每天的銷售利潤為y元,試寫出y與x之間的函數(shù)關(guān)系式.
(3)商場要想獲得最大利潤,每部手機的售價應(yīng)訂為為多少元?此時的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,四邊形ABCD為正方形,點E,F分別在AB與BC上,且∠EDF=45°,易證:AE+CF=EF(不用證明).
(1)如圖②,在四邊形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,點E,F分別在AB與BC上,且∠EDF=60°.猜想AE,CF與EF之間的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖③,在四邊形ABCD中,∠ADC=2α,DA=DC,∠DAB與∠BCD互補,點E,F分別在AB與BC上,且∠EDF=α,請直接寫出AE,CF與EF之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點.
(1)若∠BAC=60°,∠C=70°,求∠AFB的大;
(2)若D是BC的中點,∠ABE=30°,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點A,點A的橫坐標(biāo)是1.
(1)求點A的坐標(biāo)及雙曲線的解析式;
(2)點B是雙曲線上一點,且點B的縱坐標(biāo)是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com