【題目】綜合探究題
在之前的學習中,我們已經(jīng)初步了解到,長方形的對邊平行且相等,每個角都是.如圖,長方形中,,,為邊上一動點,從點出發(fā),以向終點運動,同時動點從點出發(fā),以向終點運動,運動的時間為.
(1)當時,①則線段的長=______;
②當平分時,求的值;
(2)若,且是以為腰的等腰三角形,求的值;
(3)連接,直接寫出點與點關于對稱時與的值.
【答案】(1)①5cm ② (2)3或 (3),t=4
【解析】
(1)①先得出,,,在中,根據(jù)勾股定理得,;②當EP平分時,根據(jù)角平分線的性質(zhì)可得:點P到EC的距離等于點P到AD距離,求出BC上的高等于4,根據(jù)面積可以求出a的值;
(2)先得出,,,再分兩種情況①,②,建立方程即可得出結論;
(3)先判斷出,,進而求出,再構造出直角三角形,得出,進而建立方程即可得出結論.
解:(1)① 四邊形是長方形,
當時,由運動知,,
,
在中,根據(jù)勾股定理得,;
②當EP平分時,根據(jù)角平分線的性質(zhì)可得:
點P到EC的距離等于點P到AD距離,
即:,
,則
.
故.
(2)當時,由運動知,,
,
在中,,
是以CE為腰的等腰三角形,
①,
,
.
②,
,
即:t的值為3或;
(3)如圖,
由運動知,,
點C與點E關于對稱,
,
過點P作于F,
四邊形是長方形,
,
在中,
根據(jù)勾股定理得,,
,
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.
(1)求證:∠B=2∠PCA.
(2)求證:PA是⊙O的切線;
(3)若點B位于直徑CD的下方,且CD平分∠ACB,試判斷此時AE與BE的大小關系,并說明由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習“分式”一章后,老師寫出下面的一道題讓同學們解答.
計算: 其中小明的解答過程如下:
解:原式 (A)
(B)
(C)
(D)
(1)上述計算過程中,是從哪一步開始出現(xiàn)錯誤的?請寫出該步代號:______;
(2)寫出錯誤原因是____________;
(3)本題正確的解答過程.
解:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了迎接五一黃金周的購物高峰,某品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:
運動鞋價格 | 甲 | 乙 |
進價(元/雙) | m | m﹣30 |
售價(元/雙) | 240 | 160 |
已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.
(1)求m的值;
(2)若購進乙種運動鞋x(雙),要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于13000元且不超過13500元,問該專賣店有幾種進貨方案;
(3)在(2)的條件下求出總利潤y(元)與購進乙種運動鞋x(雙)的函數(shù)關系式,并用關系式說明哪種方案的利潤最大,最大利潤是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷MD、MN的數(shù)量關系和位置關系,得出結論.
結論1:DM、MN的數(shù)量關系是 ;
結論2:DM、MN的位置關系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉180°,其他條件不變,則(2)中的兩個結論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+2x+m﹣2=0有兩個實數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是( )
A.帶①去B.帶②去C.帶③去D.帶①和②去
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com