【題目】已知:如圖,在△ABC中,AD⊥BC,垂足是D,E是線段AD上的點,且AD=BD,DE=DC.
⑴ 求證:∠BED=∠C;
⑵ 若AC=13,DC=5,求AE的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖O為坐標原點,四邊形ABCD是菱形,A(4,4),B點在第二象限,AB=5,AB與y軸交于點F,對角線AC交y軸于點E
(1)直接寫出B、C點的坐標;
(2)動點P從C點出發(fā)以每秒1個單位的速度沿折線段C﹣D﹣A運動,設(shè)運動時間為t秒,請用含t的代數(shù)式表示△EDP的面積;
(3)在(2)的條件下,是否存在一點P,使△APE沿其一邊翻折構(gòu)成的四邊形是菱形?若存在,請直接寫出當t為多少秒時存在符合條件的點P;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB∥CD,NE平分∠FND,MB平分∠FME,且2∠E+∠F=222°,則∠FME的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016四川省廣安市)某水果積極計劃裝運甲、乙、丙三種水果到外地銷售(每輛汽車規(guī)定滿載,并且只裝一種水果).如表為裝運甲、乙、丙三種水果的重量及利潤.
(1)用8輛汽車裝運乙、丙兩種水果共22噸到A地銷售,問裝運乙、丙兩種水果的汽車各多少輛?
(2)水果基地計劃用20輛汽車裝運甲、乙、丙三種水果共72噸到B地銷售(每種水果不少于一車),假設(shè)裝運甲水果的汽車為m輛,則裝運乙、丙兩種水果的汽車各多少輛?(結(jié)果用m表示)
(3)在(2)問的基礎(chǔ)上,如何安排裝運可使水果基地獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.
(1)該店每天賣出這兩種菜品共多少份?
(2)該店為了增加利潤,準備降低A種菜品的售價,同時提高B種菜品的售價,售賣時發(fā)現(xiàn),A種菜品售價每降0.5元可多賣1份;B種菜品售價每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,在正方形ABCD中,點E在對角線AC上(不與點A、C重合),連結(jié)ED,EB,過點E作EF⊥ED,交邊BC于點F.易知∠EFC+∠EDC=180°,進而證出EB=EF.
探究:如圖②,點E在射線CA上(不與點A、C重合),連結(jié)ED、EB,過點E作EF⊥ED,交CB的延長線于點F.求證:EB=EF
應(yīng)用:如圖②,若DE=2,CD=1,則四邊形EFCD的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上有A、B、C三個點,它們表示的數(shù)分別是-24,-10,10.A、B兩點間的距離記為“AB”.
(1)填空:AB= ,BC= ;
(2)若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒3個單位 長度和7個單位長度的速度向右運動,設(shè)運動時間為t,用含t的代數(shù)式表示BC和AB的長,試探索:BC - AB的值是否隨著時間t的變化而改變?請說明理由.
(3)現(xiàn)有動點P、Q都從A點出發(fā),點P以每秒1個單位長度的速度向終點C移動;當點P 移動到B點時,點Q才從A點出發(fā),并以每秒3個單位長度的速度向右移動,且當點P到達C點時,點Q就停止移動.設(shè)點P移動的時間為t秒,問:當t為多少時P、Q兩點相距6個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項中的( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com