【題目】如圖,直線l1∥l2 , l1和AB的夾角∠DAB=135°,且AB=50mm,求兩平行線l1和l2之間的距離.
【答案】解:如圖,過點A作AC⊥l2于點C,
∵直線l1∥l2 , AC⊥l2 ,
∴∠DAC=90°,
∵∠DAB=135°,
∴∠BAC=∠DAB﹣∠DAC=45°,
∴∠ABC=45°,
∴∠BAC=∠ABC,
∴AC=BC,
在Rt△ABC中,AC2+BC2=AB2 ,
2AC2=502 ,
∴AC=25
∴兩平行線l1和l2之間的距離為25.
【解析】過點A作AC⊥l2于點C,證明∠BAC=∠ABC,所以AC=BC,在Rt△ABC中,AC2+BC2=AB2 , 即可解答.
【考點精析】解答此題的關(guān)鍵在于理解平行線之間的距離的相關(guān)知識,掌握兩條平行線的距離:兩條直線平行,從一條直線上的任意一點向另一條直線引垂線,垂線段的長度,叫做兩條平行線的距離.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CD、BC.
(1)求證△BCD是直角三角形;
(2)點P為線段BD上一點,若∠PCO+∠CDB=180°,求點P的坐標;
(3)點M為拋物線上一點,作MN⊥CD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,有一池塘,要測池塘兩端A、B的距離,可先在平地上取一個可以直接到達A和B的點C , 連結(jié)AC并延長到D , 使CD=CA , 連結(jié)BC并延長到E , 使CE=CB , 連結(jié)DE , A、B的距離為( )
A.線段AC的長度
B.線段BC的長度
C.線段DE長度
D.無法判斷
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年我市某公司分兩次采購了一批大蒜,第一次花費40萬元,第二次花費60萬元,已知第一次采購時每噸大蒜的價格比去年的平均價格上漲了500元,第二次采購時每噸大蒜的價格比去年的平均價格下降了500元,第二次采購的數(shù)量是第一次采購數(shù)量的兩倍.
(1)試問去年每噸大蒜的平均價格是多少元?
(2)該公司可將大蒜加工成蒜粉或蒜片,若單獨加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600元.為出口需要,所有采購的大蒜必須在30天內(nèi)加工完畢,且加工蒜粉的大蒜數(shù)量不少于加工蒜片的大蒜數(shù)量的一半.為獲得最大利潤,應(yīng)將多少噸大蒜加工成蒜粉?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=﹣x2+1的圖象與x軸交于A、B兩點,與y軸交于點C,下列說法錯誤的是( 。.
A. 點C的坐標是(0,1) B. 線段AB的長為2
C. △ABC是等腰直角三角形 D. 當x>0時,y隨x增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列一元二次方程有兩個相等的實數(shù)根的是( )
A.x2+1=0
B.x2+4x﹣4=0
C.x2+x+ =0
D.x2﹣x+ =0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com