【題目】如圖,已知四邊形ABCD中,∠D=∠B=90°,AE平分∠DAB,CF平分∠DCB.試判斷∠AEF與∠CFE是否相等?并證明你的結論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖:等腰△ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,AB邊于E,F點.若點D為BC邊的中點,點M為線段EF上一動點,則△CDM周長的最小值為( 。
A. 6 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線L1:y=﹣x2+bx+c經過點A(1,0)和點B(5,0)已知直線l的解析式為y=kx﹣5.
(1)求拋物線L1的解析式、對稱軸和頂點坐標.
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)當k=2時,直線與拋物線交于M、N兩點,點P是拋物線位于直線上方的一點,當△PMN面積最大時,求P點坐標,并求面積的最大值.
(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2
①直接寫出y隨x的增大而增大時x的取值范圍;
②直接寫出直線l與圖象L2有四個交點時k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,圖形ABCD是由兩個二次函數(shù)y1=kx2+m(k<0)與y2=ax2+b(a>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接寫出這兩個二次函數(shù)的表達式;
(2)判斷圖形ABCD是否存在內接正方形(正方形的四個頂點在圖形ABCD上),并說明理由;
(3)如圖2,連接BC,CD,AD,在坐標平面內,求使得△BDC與△ADE相似(其中點C與點E是對應頂點)的點E的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2020年是全面建成小康社會收官之年,某扶貧幫扶小組積極響應,對農民實施精準扶貧.某農戶老張家種植花椒和黑木耳兩種干貨共800千克,扶貧小組通過市場調研發(fā)現(xiàn),花椒市場價60元/千克,黑木耳市場價48元/千克,老張全部售完可以收入4.2萬元.已知老張種植花椒成本需25元/千克,種植木耳成本需35元/千克,根據(jù)脫貧目標任務要求,老張種植花椒和黑木耳的兩種干貨的純收入(銷售收入-種植成本)在2萬元以上才可以順利脫貧.請你分析一下扶貧幫扶小組是否能幫助老張順利脫貧.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.
(1)觀察猜想:
圖1中,PM與PN的數(shù)量關系是 ,位置關系是 .
(2)探究證明:
將圖1中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;
(3)拓展延伸:
把△CDE繞點C任意旋轉,若AC=4,CD=2,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分8分)某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求.商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】東明商場日用品柜臺名售貨員月完成的銷售額情況如下表:
①計算銷售額的平均數(shù)、中位數(shù)、眾數(shù).
②商場為了完成年度的銷售任務,調動售貨員的積極性,在一年的最后月份采取超額有獎的辦法.你認為根據(jù)上面計算結果,每個售貨員統(tǒng)一的銷售額標準是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com