【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標軸分別交于點E,F,與雙曲線y=﹣(x<0)交于點P(﹣1,n),且F是PE的中點,直線x=a與l交于點A,與雙曲線交于點B(不同于A),PA=PB,則a=________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標桿CD和EF,兩標桿相隔52米,并且建筑物AB,標桿CD和EF在同一豎直平面內(nèi),從標桿CD后退2米到點G處,在G處測得建筑物頂端A和標桿頂端C在同一條直線上;從標桿FE后退4米到點H處,在H處測得建筑物頂端A和標桿頂端E在同一條直線上,求建筑物的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)若該方程有實數(shù)根,求a的取值范圍;
(2)若該方程一個根為-1,求方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形中,將一個直角三角板的直角頂點與點重合,一條直角邊與邊交于點(點不與點和點重合),另一條直角邊與邊的延長線交于點.
如圖①,求證:;
如圖②,此直角三角板有一個角是,它的斜邊與邊交于,且點是斜邊的中點,連接,求證:;
在的條件下,如果,那么點是否一定是邊的中點?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
學(xué)習(xí)了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聰繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進行研究
小聰將命題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.
小聰?shù)奶骄糠椒ㄊ菍Α?/span>B分為“直角、鈍角、銳角”三種情況進行探究.
第一種情況:當(dāng)∠B 是直角時,如圖1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)“HL”定理,可以知道Rt△ABC≌Rt△DEF.
第二種情況:當(dāng)∠B 是銳角時,如圖2,BC=EF,∠B=∠E<90°,在射線EM上有點D,使DF=AC,畫出符合條件的點D,則△ABC和△DEF的關(guān)系是 ;
A.全等 B.不全等 C.不一定全等
第三種情況:當(dāng)∠B是鈍角時,如圖3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.過點C作AB邊的垂線交AB延長線于點M;同理過點F作DE邊的垂線交DE延長線于N,根據(jù)“ASA”,可以知道△CBM≌△FEN,請補全圖形,進而證出△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖南省株洲市)某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當(dāng)綜合評價得分大于或等于80分時,該生綜合評價為A等.
(1)孔明同學(xué)的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學(xué)測試成績和平時成績各得多少分?
(2)某同學(xué)測試成績?yōu)?/span>70分,他的綜合評價得分有可能達到A等嗎?為什么?
(3)如果一個同學(xué)綜合評價要達到A等,他的測試成績至少要多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買若干臺電腦,現(xiàn)從兩家商場了解到同一種型號的電腦報價均為元,并且多買都有一定的優(yōu)惠. 各商場的優(yōu)惠條件如下:
甲商場優(yōu)惠條件:第一臺按原價收費,其余的每臺優(yōu)惠;
乙商場優(yōu)惠條件:每臺優(yōu)惠.
設(shè)公司購買臺電腦,選擇甲商場時, 所需費用為元,選擇乙商場時,所需費用為元,請分別求出與之間的關(guān)系式.
什么情況下,兩家商場的收費相同?什么情況下,到甲商場購買更優(yōu)惠?什么情況下,到乙商場購買更優(yōu)惠?
現(xiàn)在因為急需,計劃從甲乙兩商場一共買入臺某品牌的電腦,其中從甲商場購買臺電腦.已知甲商場的運費為每臺元,乙商場的運費為每臺元,設(shè)總運費為元,在甲商場的電腦庫存只有臺的情況下,怎樣購買,總運費最少?最少運費是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線的圖象經(jīng)過點,且與直線交于點.
(1)求直線的解析式,并直接寫出不等式的解集;
(2)若為坐標原點,直線與軸交于點,在軸上是否存在一點,滿足.若存在,求出此時點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2 cm/s的速度向D移動.
(1)P、Q兩點從出發(fā)開始到幾秒?四邊形PBCQ的面積為33cm2;
(2)P、Q兩點從出發(fā)開始到幾秒時?點P和點Q的距離是10cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com