【題目】如圖,AB是⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,∠BAC=45°,給出下列四個(gè)結(jié)論:①∠EBC=22.5°②BD=DC③AE=DC④=2,其中正確結(jié)論有_____(只填序號(hào))
【答案】①②④
【解析】
連接AD,根據(jù)直徑所對(duì)的圓周角是直角可以得∠AEB=∠ADB=90°,再根據(jù)等腰三角形的性質(zhì)即可求出①②,利用等弦對(duì)等弧可以求出④.
連接AD,AB是⊙O的直徑,則∠AEB=∠ADB=90°,
∵AB=AC,∠BAC=45°,
∴∠ABE=45°,∠C=∠ABC==67.5°,AD平分∠BAC,
∴AE=BE,∠EBC=90°﹣67.5°=22.5°,DB=CD,故①②正確,
∵AE=BE,
∴,
又AD平分∠BAC,所以,=2,④正確.
∵∠C=67.5°,BE⊥CE,
∴BE>BC,
∴AE>DC,故③錯(cuò)誤.
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=a-4ax與x軸交于A,B兩點(diǎn)(A在B的左側(cè)).
(1)求點(diǎn)A,B的坐標(biāo);
(2)已知點(diǎn)C(2,1),P(1,-a),點(diǎn)Q在直線PC上,且Q點(diǎn)的橫坐標(biāo)為4.
①求Q點(diǎn)的縱坐標(biāo)(用含a的式子表示);
②若拋物線與線段PQ恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B點(diǎn),與y軸交于點(diǎn)C(0,﹣3).
(1)求該拋物線的解析式;
(2)觀察圖象,直接寫(xiě)出不等式x2+bx+c>0的解集;
(3)設(shè)(1)中的拋物線上有一個(gè)動(dòng)點(diǎn)P,點(diǎn)P在該拋物線上滑動(dòng)且滿足S△PAB=8,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華為了測(cè)量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計(jì)算結(jié)果精確到1m)(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,臺(tái)風(fēng)中心位于點(diǎn),并沿東北方向移動(dòng),已知臺(tái)風(fēng)移動(dòng)的速度為40千米/時(shí),受影響區(qū)域的半徑為260千米,市位于點(diǎn)的北偏東75°方向上,距離點(diǎn)480千米.
(1)說(shuō)明本次臺(tái)風(fēng)是否會(huì)影響市;
(2)若這次臺(tái)風(fēng)會(huì)影響市,求市受臺(tái)風(fēng)影響的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD的對(duì)角線AC與BD相交于點(diǎn)O,過(guò)點(diǎn)O作OE⊥AD于點(diǎn)E,若AB=4,∠ABC=60°,則OE的長(zhǎng)是( )
A.B.2C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌的洗衣機(jī)在市場(chǎng)上享有美譽(yù),市場(chǎng)標(biāo)價(jià)為元,進(jìn)價(jià)為元,市場(chǎng)調(diào)研發(fā)現(xiàn),若在市場(chǎng)價(jià)格的基礎(chǔ)上降價(jià)會(huì)引起銷售量的增加,當(dāng)銷售價(jià)格為元時(shí),月銷售量為臺(tái);當(dāng)銷售價(jià)格為元時(shí),月銷售量為臺(tái).若月銷售量(臺(tái))與銷售價(jià)格(元)滿足一次函數(shù)關(guān)系.
(1)求與之間的函數(shù)關(guān)系式;
(2)公司決定采取降價(jià)促銷,迅速占領(lǐng)市場(chǎng)的方案,請(qǐng)根據(jù)以上信息,判斷當(dāng)銷售價(jià)格定為多少元時(shí),公司的月利潤(rùn)最大,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(4,2)、B(n,﹣4)是一次函數(shù)y=kx+b圖象與反比例函數(shù)圖象的兩個(gè)交點(diǎn).
(1)求此反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫(xiě)出△AOB的面積;
(3)根據(jù)圖象直接寫(xiě)出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com