【題目】在中,,為中點(diǎn),點(diǎn)在線段上,連接,在下方有一點(diǎn),滿足,連接.
(1)若,,求的面積;
(2)若,,求證:.
【答案】(1);(2)見解析.
【解析】
(1)先證明AB⊥AC,再求出∠B=30°,然后根據(jù)直角三角形斜邊中線的性質(zhì)可得出BC的長,再結(jié)合勾股定理可得出AB,AC的長,根據(jù)△ABE的面積=△ABC的面積可求出結(jié)果;
(2)延長CN至G,使CG=AC,易得△ACM≌△GCM,再證明∠NMC=∠MAE,在MC上截取MF=AE,可得出△MAE≌△NMF,結(jié)合已知再推出ME=CN=FN=CF,即△NCF為等邊三角形,繼而有∠MCN=60°,因此可得到∠ACB=60°,有AB=BC,結(jié)合AE=BC最終可得出結(jié)果.
(1)解:∵四邊形ABCD為平行四邊形,
∴AB∥CD,AD∥BC,
∴∠CAD=∠ACB=∠BCN=60°,
又AC⊥CD,
∴AB⊥AC,∴∠B=30°,
在Rt△ABC中,E為BC的中點(diǎn),
∴BC=2AE=10,
∴AC=BC=5,
∴AB=,
∴△ABE的面積=△ABC的面積=××AB×AC=.
(2)證明:延長CN至G,使CG=AC,
由(1)知∠ACM=∠GCM,
又MC=MC,
∴△ACM≌△GCM(SAS),
∴AM=GM,∠MAC=∠G,
又AM=MN,∴GM=MN,
∴∠G=∠MNG=∠MAC=∠MAE+∠EAC.
又由(1)易得,EC=EA,∴∠EAC=∠ACE=∠NCM,
∵∠MNG=∠NCM+∠NMC,
∴∠NMC=∠MAE,
在MC上截取MF=AE,
∴△MAE≌△NMF(SAS),
∴ME=FN,
又MC=ME+CE=MF+CF,MC=EA+CN,
∵EA=MF=CE,
∴ME=CN=CF=FN,
∴△NCF為等邊三角形,
∴∠MCN=60°,
∴∠ACB=60°,
∴sin∠ACB==,
∴AB=BC,
又AE=BC,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P從點(diǎn)C沿折線CD﹣DE﹣EB運(yùn)動(dòng)到點(diǎn)B時(shí)停止,點(diǎn)Q從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/s.若P,Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯(cuò)誤的是( 。
A.AE=8cm
B.sin∠EBC=
C.當(dāng)10≤t≤12時(shí),
D.當(dāng)t=12s時(shí),△PBQ是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=12,經(jīng)過A,D兩點(diǎn)的⊙O與邊BC相切于點(diǎn)E,則⊙O的半徑為( 。
A. 4 B. C. 5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,利用直尺和圓規(guī),分別以、為圓心,相同的長度為半徑(半徑大于線段的一半)作四段弧,分別交于、兩點(diǎn),連接、,分別交、于、,連接、,則四邊形為( )
A.梯形B.平行四邊形C.矩形D.菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的平分線過點(diǎn),以點(diǎn)為圓心的圓與相切于點(diǎn),為的直徑.
(1)求證:是的切線;
(2)若,,求;
(3)若的半徑為,,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,∠BAD=90°,延長AD,BC交于點(diǎn)F.過點(diǎn)D作⊙O的切線,交BF于點(diǎn)E.
(1)求證:DE=EF;
(2)若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過⊙O的圓心O,交⊙O于A、C兩點(diǎn),BC=1,AD為⊙O的弦,連結(jié)BD,∠BAD=∠ABD=30°.
(1)求證:直線BD是⊙O的切線;
(2)求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點(diǎn)D、F分別在邊AB、AC上,請直接寫出線段BD、CF的數(shù)量和位置關(guān)系;
(2)拓展探究:如圖2,當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)銳角θ時(shí),上述結(jié)論還成立嗎?若成立,請給予證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+2(m﹣2)x+3的圖象與x、y軸交于A、B、C三點(diǎn),其中A(3,0),拋物線的頂點(diǎn)為D.
(1)求m的值及頂點(diǎn)D的坐標(biāo);
(2)如圖1,若動(dòng)點(diǎn)P在第一象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對稱軸1上,當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)Q是二次函數(shù)圖象上對稱軸右側(cè)一點(diǎn),設(shè)點(diǎn)Q到直線BC的距離為d,到拋物線的對稱軸的距離為d1,當(dāng)|d﹣d1|=2時(shí),請求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com