(2010•攀枝花)如圖所示,在△ABC中,BC>AC,點D在BC上,且DC=AC,∠ACB的平分線CF交AD于點F.點E是AB的中點,連接EF.
(1)求證:EF∥BC;
(2)若△ABD的面積是6,求四邊形BDFE的面積.
【答案】分析:(1)在等腰△ACD中,CF是頂角∠ACD的平分線,根據(jù)等腰三角形三線合一的性質知F是底邊AD的中點,由此可證得EF是△ABD的中位線,即可得到EF∥BC的結論;
(2)易證得△AEF∽△ABD,根據(jù)兩個相似三角形的面積比(即相似比的平方),可求出△ABD的面積,而四邊形BDFE的面積為△ABD和△AEF的面積差,由此得解.
解答:(1)證明:∵在△ACD中,DC=AC,CF平分∠ACD;
∴AF=FD,即F是AD的中點;
又∵E是AB的中點,
∴EF是△ABD的中位線;
∴EF∥BC;

(2)解:由(1)易證得:△AEF∽△ABD;
∴S△AEF:S△ABD=(AE:AB)2=1:4,
∴S△ABD=4S△AEF=6,
∴S△AEF=1.5.
∴S四邊形BDFE=S△ABD-S△AEF=6-1.5=4.5.
點評:此題主要考查的是等腰三角形的性質、三角形中位線定理及相似三角形的判定和性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點.拋物線與y軸的交點為C.
(1)求這個拋物線的解析式;
(2)在拋物線上存在點M,是△MAB是以AB為底邊的等腰三角形,求點M的坐標;
(3)在拋物線上是否存在點P使得△PAC的面積是△ABC面積的?若存在,試求出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點.拋物線與y軸的交點為C.
(1)求這個拋物線的解析式;
(2)在拋物線上存在點M,是△MAB是以AB為底邊的等腰三角形,求點M的坐標;
(3)在拋物線上是否存在點P使得△PAC的面積是△ABC面積的?若存在,試求出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省攀枝花市中考數(shù)學試卷(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點.拋物線與y軸的交點為C.
(1)求這個拋物線的解析式;
(2)在拋物線上存在點M,是△MAB是以AB為底邊的等腰三角形,求點M的坐標;
(3)在拋物線上是否存在點P使得△PAC的面積是△ABC面積的?若存在,試求出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2010•攀枝花)如圖:等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點A在直線y=x上,其中A點的橫坐標為1,且兩條直角邊AB、AC分別平行于x軸、y軸,若雙曲線y=(k≠0)與△ABC有交點,則k的取值范圍是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《三角形》(04)(解析版) 題型:選擇題

(2010•攀枝花)如圖所示.△ABC內接于⊙O,若∠OAB=28°,則∠C的大小是( )

A.56°
B.62°
C.28°
D.32°

查看答案和解析>>

同步練習冊答案