【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,△ABO是直角三角形,∠ABO=90°,點(diǎn)B的坐標(biāo)為(﹣1,2),將△ABO繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1O,則過(guò)A1,B兩點(diǎn)的直線解析式為 .
【答案】y=3x+5
【解析】
試題如圖,過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,
∵點(diǎn)B的坐標(biāo)為(﹣1,2),
∴OC=1,BC=2,
∵∠ABO=90°,
∴∠BAC+∠AOB=90°,
又∵∠BAC+∠ABC=90°,
∴∠AOB=∠ABC,
∴Rt△ABC∽R(shí)t△BOC,
∴=,
即=,
解得AC=4,
∴OA=OC+AC=1+4=5,
∴點(diǎn)A(﹣5,0),
根據(jù)旋轉(zhuǎn)變換的性質(zhì),點(diǎn)A1(0,5),
設(shè)過(guò)A1,B兩點(diǎn)的直線解析式為y=kx+b,
則,
解得.
所以過(guò)A1,B兩點(diǎn)的直線解析式為y=3x+5.
故答案為:y=3x+5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等腰直角三角形,∠C=90°,點(diǎn)M是AC的中點(diǎn),延長(zhǎng)BM至點(diǎn)D,使DM=BM,連接AD.
(1)如圖①,求證:△DAM≌△BCM;
(2)已知點(diǎn)N是BC的中點(diǎn),連接AN.
①如圖②,求證:△BCM≌△ACN;
②如圖③,延長(zhǎng)NA至點(diǎn)E,使AE=NA,連接DE.求證:BD⊥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,D,E是△ABC內(nèi)兩點(diǎn),AD平分∠BAC,∠EBC≡∠E=60°,若BE=10,DE=4,則BC的長(zhǎng)度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過(guò)程中,
(1)求證:△ABQ ≌ △CAP;
(2)∠CMQ的大小變化嗎?若變化,則說(shuō)明理由,若不變,則求出它的度數(shù);
(3)連接PQ,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)多少秒時(shí),△PBQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC=4,點(diǎn)D為AB的中點(diǎn),M,N分別在BC,AC上,且BM=CN現(xiàn)有以下四個(gè)結(jié)論:
①DN=DM; ② ∠NDM=90°; ③ 四邊形CMDN的面積為4; ④△CMN的面積最大為2.
其中正確的結(jié)論有( )
A. ①②④; B. ①②③; C. ②③④; D. ①②③④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),AE∥BC.
(1)作∠ADC的平分線DF,與AE交于點(diǎn)F;(用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)在(1)的條件下,若AD=2,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市場(chǎng)上甲種商品的采購(gòu)價(jià)為60元/件,乙種商品的采購(gòu)價(jià)為100元/件,某商店需要采購(gòu)甲、乙兩種商品共15件,且乙種商品的件數(shù)不少于甲種商品件數(shù)的2倍.設(shè)購(gòu)買甲種商品件(>0),購(gòu)買兩種商品共花費(fèi)元.
(1)求出與的函數(shù)關(guān)系式(寫(xiě)出自變量的取值范圍);
(2)試?yán)煤瘮?shù)的性質(zhì)說(shuō)明,當(dāng)采購(gòu)多少件甲種商品時(shí),所需要的費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】媽媽在超市購(gòu)買兩種優(yōu)質(zhì)水果.先購(gòu)買了2千克甲水果和3千克乙水果,共花費(fèi)90元;后又購(gòu)買了1千克甲水果和2千克乙水果,共花費(fèi)55元.(每次兩種水果的售價(jià)都不變)
(1)求甲水果和乙水果的售價(jià)分別是每千克多少元;
(2)如果還需購(gòu)買兩種水果共12千克,要求乙水果的數(shù)量不少于甲水果數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買方案,使所需總費(fèi)用最低.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com