【題目】關(guān)于的一元二次方程的實(shí)數(shù)解是

的取值范圍;

如果,求的值.

【答案】的取值范圍是,且 的值為

【解析】

1)根據(jù)題意可知一元二次方程有兩個(gè)實(shí)數(shù)根,故△≥0,且方程為一元二次方程,可知二次項(xiàng)系數(shù)不為0,據(jù)此解答即可

2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,x1+x2=﹣,x1x2=,根據(jù)x1+x2x1x2=1k列出等式,解答即可

1=224×k1×1=﹣4k

∵方程有實(shí)數(shù)根,∴△≥0k+10,解得k0k1,k的取值范圍是k0k1;

2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,x1+x2=﹣,x1x2=

x1+x2x1x2=1k,=1k,解得k1=2k2=﹣2

經(jīng)檢驗(yàn),k1、k2是原方程的解

又由(1k0k1k的值為﹣2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=6AB=10,點(diǎn)D是邊BC上一點(diǎn).若沿ADACD翻折,點(diǎn)C剛好落在AB邊上點(diǎn)E處,則AD= _______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC4,ABCD,BD6,點(diǎn)ED點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿DA向點(diǎn)A勻速移動(dòng),點(diǎn)F從點(diǎn)C出發(fā),以每秒3個(gè)單位的速度沿CBC作勻速移動(dòng),點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動(dòng),三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動(dòng).

1)試證明:ADBC

2)在移動(dòng)過程中,小芹發(fā)現(xiàn)當(dāng)點(diǎn)G的運(yùn)動(dòng)速度取某個(gè)值時(shí),有△DEG與△BFG全等的情況出現(xiàn),請(qǐng)你探究當(dāng)點(diǎn)G的運(yùn)動(dòng)速度取哪些值時(shí),△DEG與△BFG全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3(a0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,且BO=OC=3AO.

(1)求拋物線的解析式;

(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBC是等腰三角形?若存在,請(qǐng)直接寫出符合條件的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,點(diǎn)E是直線BC上一點(diǎn),連接AE,過點(diǎn)CCFAE于點(diǎn)F,連接BF.如圖①,當(dāng)點(diǎn)EBC上時(shí),易證AF﹣CF=BF(不需證明),點(diǎn)ECB的延長(zhǎng)線上,如圖②:點(diǎn)EBC的延長(zhǎng)線上,如圖③,線段AF,CF,BF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想,并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓內(nèi)接四邊形中,,,,則四邊形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校圖書館大樓工程在招標(biāo)時(shí),接到甲乙兩個(gè)工程隊(duì)的投標(biāo)書,每施工一個(gè)月,需付甲工程隊(duì)工程款16萬元,付乙工程隊(duì)12萬元。工程領(lǐng)導(dǎo)小組根據(jù)甲乙兩隊(duì)的投標(biāo)書測(cè)算,可有三種施工方案:

1)甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完工;

2)乙隊(duì)單獨(dú)完成此項(xiàng)工程要比規(guī)定工期多用3個(gè)月;

3)若甲乙兩隊(duì)合作2個(gè)月,剩下的工程由乙隊(duì)獨(dú)做也正好如期完工。

你覺得哪一種施工方案最節(jié)省工程款,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Ax軸上,△ABO是直角三角形,∠ABO=90°,點(diǎn)B的坐標(biāo)為(﹣1,2),將△ABO繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1O,則過A1,B兩點(diǎn)的直線解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)(1)閱讀理解:

如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是_________;

(2)問題解決:

如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證BE+CF>EF.

查看答案和解析>>

同步練習(xí)冊(cè)答案