【題目】如圖,在△ABC中,點(diǎn)D,E分別是AB,C的中點(diǎn),則S△ADE:S△ABC=( )
A.1:2
B.1:3
C.1:4
D.1:5
【答案】C
【解析】解:∵點(diǎn)D、E分別是AB、C的中點(diǎn),
∴DE是△ABC的中位線,
∴DE∥BC,DE= BC,
∴△ADE∽△ABC,
∴S△ADE:S△ABC=( )2= ;
故選:C.
【考點(diǎn)精析】關(guān)于本題考查的三角形中位線定理和相似三角形的判定與性質(zhì),需要了解連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點(diǎn),過點(diǎn)E作EF∥AD,與AC,DC分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若,則S△EDH=13S△CFH .
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),A點(diǎn)的坐標(biāo)為(﹣1,0).
(1)求二次函數(shù)的解析式;
(2)若點(diǎn)P是拋物線在第四象限上的一個(gè)動點(diǎn),當(dāng)四邊形ABPC的面積最大時(shí),
求點(diǎn)P的坐標(biāo),并求出四邊形ABPC的最大面積;
(3)若Q為拋物線對稱軸上一動點(diǎn),直接寫出使△QBC為直角三角形的點(diǎn)Q的
坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD中,對角線AC、BD相交于點(diǎn)O,過點(diǎn)C作CE∥BD,過點(diǎn)D作DE∥AC,CE與DE相交于點(diǎn)E.
(1)求證:四邊形CODE是矩形;
(2)若AB=5,AC=6,求四邊形CODE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,E、F分別是正方形ABCD的邊CD,AD上的點(diǎn),且CE=DF,AE,BF相交于點(diǎn)O,下列結(jié)論①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四邊形DEOF中,錯(cuò)誤的有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)面積為1的正方形,經(jīng)過一次“生長”后,在它的左右肩上生出兩個(gè)小正方形(如圖1),其中,三個(gè)正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,生出了4個(gè)正方形(如圖2),如果按此規(guī)律繼續(xù)“生長”下去,它將變得“枝繁葉茂”.在“生長”了2 017次后形成的圖形中所有正方形的面積和是( )
圖1 圖2
A. 2015 B. 2016 C. 2017 D. 2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示為一張長為m,寬為n(m<n)的小長方形紙片,現(xiàn)將8張?jiān)摷埰慈鐖D2所示的方式無縫隙不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個(gè)長方形)用陰影表示,設(shè)左上角與右下角的陰影部分面積差為S,當(dāng)BC長度變化時(shí),按照同樣的方式放置,S卻始終保持不變,則此時(shí)=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)2(y6)2-(y4)3; (2)(ab2c)2÷(ab3c2);
(3)(-x-y)(x-y)+(x+y)2 (4)利用公式計(jì)算803×797;
(5)計(jì)算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+m(m>0)與x軸交于點(diǎn)A(-2,0),直線y=-x+n(n>0)與x軸、y軸分別交于B、C兩點(diǎn),并與直線y=2x+m(m>0)相交于點(diǎn)D,若AB=4.
(1)求點(diǎn)D的坐標(biāo);
(2)求出四邊形AOCD的面積;
(3)若E為x軸上一點(diǎn),且△ACE為等腰三角形,直接寫出點(diǎn)E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com