【題目】某學(xué)校開展“青少年科技創(chuàng)新比賽”活動,“喜洋洋”代表隊設(shè)計了一個遙控車沿直線軌道AC做勻速直線運動的模型.甲、乙兩車同時分別從A,B兩處出發(fā),沿軌道到達(dá)C處,B在AC上,甲的速度是乙的速度的1.5倍,設(shè)t(分)后甲、乙兩遙控車與B處的距離分別為d1,d2,則d1,d2與t的函數(shù)關(guān)系如圖,試根據(jù)圖象解決下列問題:
(1)填空:乙的速度v2= 米/分;
(2)寫出d1與t的函數(shù)關(guān)系式:
(3)若甲、乙兩遙控車的距離超過10米時信號不會產(chǎn)生相互干擾,試探求什么時間兩遙控車的信號不會產(chǎn)生相互干擾?
【答案】(1)40;(2)d1=;(3)0≤t<2.5.
【解析】試題分析:(1)根據(jù)路程與時間的關(guān)系,可得答案;
(2)根據(jù)甲的速度是乙的速度的1.5倍,可得甲的速度,根據(jù)路程與時間的關(guān)系,可得a的值,根據(jù)待定系數(shù)法,可得答案;
(3)根據(jù)兩車的距離,可得不等式,根據(jù)解不等式,可得答案.
試題解析:(1)乙的速度v2=120÷3=40(米/分),
(2)v1=1.5v2=1.5×40=60(米/分),
60÷60=1(分鐘),a=1,
d1=;
(3)d2=40t,
當(dāng)0≤t<1時,d2+d1>10,
即-60t+60+40t>10,
解得0≤t<2.5,
∵0≤t<1,
∴當(dāng)0≤t<1時,兩遙控車的信號不會產(chǎn)生相互干擾;
當(dāng)1≤t≤3時,d2-d1>10,
即40t-(60t-60)>10,
當(dāng)1≤t<時,兩遙控車的信號不會產(chǎn)生相互干擾
綜上所述:當(dāng)0≤t<2.5時,兩遙控車的信號不會產(chǎn)生相互干擾.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙0經(jīng)過點D,E是⊙O上一點,且∠AED=45°,
(1)求證:CD是⊙O的切線.
(2)若⊙O的半徑為3,AE=5,求∠DAE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD⊥DF,EC⊥DF,∠1=∠3,∠2=∠4,求證:AE∥DF.(請在下面的解答過程的空格內(nèi)填空或在括號內(nèi)填寫理由)
證明:∵AD⊥DF,EC⊥DF,(已知)
∴∠BFD=∠ADF=90°.( )
∴EC∥( )
∴∠EBA=_____(兩直線平行,內(nèi)錯角相等)
∵∠2=∠4,(已知)
∴∠EBA=∠4.(等量代換)
∴AB∥_____.( )
∴∠2+∠ADC=180°.( )
∴∠2+∠ADF+∠3=180°.
∵∠1=∠3.(已知)
∴∠2+∠ADF+∠1=180°.(等量代換)
∴_____+∠ADF=180°.
∴AE∥DF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(-5,m)和Q(3,m)是二次函數(shù)y=2x2+bx+1圖象上的兩點.
(1)求b的值;
(2)將二次函數(shù)y=2x2+bx+1的圖象沿y軸向上平移k(k>0)個單位,使平移后的圖象與x軸無交點,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC⊥BC,BD⊥AD,AC 與BD 交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個機(jī)器人從數(shù)軸原點出發(fā),沿數(shù)軸正方向,以每前進(jìn)3步后退2步的程序運動。設(shè)該機(jī)器人每秒鐘前進(jìn)或后退1步,并且每步的距離是1個單位長,表示第秒時機(jī)器人在數(shù)軸上的位置所對應(yīng)的數(shù)。給出下列結(jié)論:①;②;③;④。其中,正確的結(jié)論的序號是( )
A.①③B.②③C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A點坐標(biāo)為(5,0),直線y=kx+b(b>0)與y軸交于點B,∠BCA=60°,連接AB,∠α=105°,則直線y=kx+b的表達(dá)式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題原型)如圖,在中,對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.
(小海的證法)證明:
是的垂直平分線,
,(第一步)
,(第二步)
.(第三步)
四邊形是平行四邊形.(第四步)
四邊形是菱形. (第五步)
(老師評析)小海利用對角線互相平分證明了四邊形是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.
(挑錯改錯)(1)小海的證明過程在第________步上開始出現(xiàn)了錯誤.
(2)請你根據(jù)小海的證題思路寫出此題的正確解答過程,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結(jié)PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.
(1)求證:PA是⊙O的切線;
(2)若tan∠BAD=,且OC=4,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com