【題目】在數(shù)的學習過程中,我們總會對其中一些具有某種特性的數(shù)進行研究,如學習自然數(shù)時,我們研究了偶數(shù)、奇數(shù)、合數(shù)、質(zhì)數(shù)等.現(xiàn)在我們來研究一種特殊的自然數(shù)﹣“純數(shù)”.
定義:對于自然數(shù)n,在通過列豎式進行的運算時各位都不產(chǎn)生進位現(xiàn)象,則稱這個自然數(shù)n為“純數(shù)”.
例如:32是“純數(shù)”,因為在列豎式計算時各位都不產(chǎn)生進位現(xiàn)象;23不是“純數(shù)”,因為在列豎式計算時個位產(chǎn)生了進位.
(1)請直接寫出1949到2019之間的“純數(shù)”;
(2)求出不大于100的“純數(shù)”的個數(shù),并說明理由.
【答案】(1)2000,2001,2002,2010,2011,2012;(2)0,1,2,10,11,12,20,21,22,30,31,32,100.共13個.
【解析】
(1)根據(jù)“純數(shù)”的概念,從2000至2019之間找出“純數(shù)”;
(2)根據(jù)“純數(shù)”的概念得到不大于100的數(shù)個位不超過2,十位不超過3時,才符合“純數(shù)”的定義解答.
解:(1)顯然1949至1999都不是“純數(shù)”,因為在通過列豎式進行的運算時要產(chǎn)生進位.
在2000至2019之間的數(shù),只有個位不超過2時,才符合“純數(shù)”的定義.
所以所求“純數(shù)”為2000,2001,2002,2010,2011,2012;
(2)不大于100的“純數(shù)”的個數(shù)有13個,理由如下:
因為個位不超過2,十位不超過3時,才符合“純數(shù)”的定義,
所以不大于100的“純數(shù)”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13個.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸相交于點、,與軸相交于點.
求該函數(shù)的表達式;
點為該函數(shù)在第一象限內(nèi)的圖象上一點,過點作,垂足為點,連接.
①求線段的最大值;
②若以點、、為頂點的三角形與相似,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,在平面直角坐標系中,直線:+n與y軸交于點A 與反比例函數(shù)的圖象交于B (-2,-2),直線過B點與x軸交于點C,OA:OC= 4:3.
(1)求m的值以及直線的函數(shù)表達式;
(2)連接AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點的坐標為,且,拋物線圖象經(jīng)過三點.
(1)求兩點的坐標;
(2)求拋物線的解析式;
(3)若點是直線下方的拋物線上的一個動點,作于點,當的值最大時,求此時點的坐標及的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為⊙的直徑,,為圓上的兩點,,弦,相交于點,
(1)求證:
(2)若,,求⊙的半徑;
(3)在(2)的條件下,過點作⊙的切線,交的延長線于點,過點作交⊙于, 兩點(點在線段上),求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由邊長都為1的小正方形組成的網(wǎng)格中,點,,均為格點,點,分別為線段,上的動點,且滿足.
(1)線段的長度等于__________;
(2)當線段取得最小值時,請借助無刻度直尺在給定的網(wǎng)格中畫出線段和,并簡要說明你是怎么畫出點Q,P的:_______________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)點,與軸相交于點.
(1)求拋物線的解析式;
(2)定義:平面上的任一點到二次函數(shù)圖象上與它橫坐標相同的點的距離,稱為點到二次函數(shù)圖象的垂直距離.如:點到二次函數(shù)圖象的垂直距離是線段的長.已知點為拋物線對稱軸上的一點,且在軸上方,點為平面內(nèi)一點,當以為頂點的四邊形是邊長為4的菱形時,請求出點到二次函數(shù)圖象的垂直距離.
(3)在(2)中,當點到二次函數(shù)圖象的垂直距離最小時,在為頂點的菱形內(nèi)部是否存在點,使得之和最小,若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】湖南省作為全國第三批啟動高考綜合改革的省市之一,從2018年秋季入學的高中一年級學生開始實施高考綜合改革.深化高考綜合改革,承載著廣大考生的美好期盼,事關千家萬戶的切身利益,社會關注度高.為了了解我市某小區(qū)居民對此政策的關注程度,某數(shù)學興趣小組隨機采訪了該小區(qū)部分居民,根據(jù)采訪情況制做了如統(tǒng)計圖表:
關注程度 | 頻數(shù) | 頻率 |
A.高度關注 | m | 0.4 |
B.一般關注 | 100 | 0.5 |
C.沒有關注 | 20 | n |
(1)根據(jù)上述統(tǒng)計圖表,可得此次采訪的人數(shù)為 ,m= ,n= .
(2)根據(jù)以上信息補全圖中的條形統(tǒng)計圖.
(3)請估計在該小區(qū)1500名居民中,高度關注新高考政策的約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于點A,B,AB=2,與y軸交于點C,對稱軸為直線x=2.
(1)求拋物線的函數(shù)表達式;
(2)設D為拋物線的頂點,連接DA、DB,試判斷△ABD的形狀,并說明理由;
(3)設P為對稱軸上一動點,要使PC﹣PB的值最大,求出P點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com