【題目】在數(shù)的學習過程中,我們總會對其中一些具有某種特性的數(shù)進行研究,如學習自然數(shù)時,我們研究了偶數(shù)、奇數(shù)、合數(shù)、質(zhì)數(shù)等.現(xiàn)在我們來研究一種特殊的自然數(shù)﹣純數(shù)

定義:對于自然數(shù)n,在通過列豎式進行的運算時各位都不產(chǎn)生進位現(xiàn)象,則稱這個自然數(shù)n純數(shù)

例如:32純數(shù),因為在列豎式計算時各位都不產(chǎn)生進位現(xiàn)象;23不是純數(shù),因為在列豎式計算時個位產(chǎn)生了進位.

1)請直接寫出19492019之間的純數(shù)

2)求出不大于100純數(shù)的個數(shù),并說明理由.

【答案】12000,20012002,2010,2011,2012;(20,1,2,10,11,12,2021,2230,3132,100.共13個.

【解析】

1)根據(jù)“純數(shù)”的概念,從20002019之間找出“純數(shù)”;

2)根據(jù)“純數(shù)”的概念得到不大于100的數(shù)個位不超過2,十位不超過3時,才符合“純數(shù)”的定義解答.

解:(1)顯然19491999都不是純數(shù),因為在通過列豎式進行的運算時要產(chǎn)生進位.

20002019之間的數(shù),只有個位不超過2時,才符合純數(shù)的定義.

所以所求純數(shù)2000,2001,2002,2010,2011,2012;

2)不大于100純數(shù)的個數(shù)有13個,理由如下:

因為個位不超過2,十位不超過3時,才符合純數(shù)的定義,

所以不大于100純數(shù)有:0,1,2,10,1112,2021,22,30,31,32,100.共13個.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸相交于點、,與軸相交于點

求該函數(shù)的表達式;

為該函數(shù)在第一象限內(nèi)的圖象上一點,過點,垂足為點,連接

求線段的最大值;

若以點、為頂點的三角形與相似,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,在平面直角坐標系中,直線+ny軸交于點A 與反比例函數(shù)的圖象交于B (-2,-2),直線B點與x軸交于點C,OA:OC= 4:3.

1)求m的值以及直線的函數(shù)表達式;

2)連接AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點的坐標為,且,拋物線圖象經(jīng)過三點.

1)求兩點的坐標;

2)求拋物線的解析式;

3)若點是直線下方的拋物線上的一個動點,作于點,當的值最大時,求此時點的坐標及的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為⊙的直徑,,為圓上的兩點,,弦,相交于點,

1)求證:

2)若,,求⊙的半徑;

3)在(2)的條件下,過點作⊙的切線,交的延長線于點,過點交⊙, 兩點(點在線段上),求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長都為1的小正方形組成的網(wǎng)格中,點,均為格點,點,分別為線段上的動點,且滿足

(1)線段的長度等于__________;

(2)當線段取得最小值時,請借助無刻度直尺在給定的網(wǎng)格中畫出線段,并簡要說明你是怎么畫出點Q,P的:_______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)點,與軸相交于點

(1)求拋物線的解析式;

(2)定義:平面上的任一點到二次函數(shù)圖象上與它橫坐標相同的點的距離,稱為點到二次函數(shù)圖象的垂直距離.如:點到二次函數(shù)圖象的垂直距離是線段的長.已知點為拋物線對稱軸上的一點,且在軸上方,點為平面內(nèi)一點,當以為頂點的四邊形是邊長為4的菱形時,請求出點到二次函數(shù)圖象的垂直距離.

(3)(2)中,當點到二次函數(shù)圖象的垂直距離最小時,在為頂點的菱形內(nèi)部是否存在點,使得之和最小,若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湖南省作為全國第三批啟動高考綜合改革的省市之一,從2018年秋季入學的高中一年級學生開始實施高考綜合改革.深化高考綜合改革,承載著廣大考生的美好期盼,事關千家萬戶的切身利益,社會關注度高.為了了解我市某小區(qū)居民對此政策的關注程度,某數(shù)學興趣小組隨機采訪了該小區(qū)部分居民,根據(jù)采訪情況制做了如統(tǒng)計圖表:

關注程度

頻數(shù)

頻率

A.高度關注

m

0.4

B.一般關注

100

0.5

C.沒有關注

20

n

(1)根據(jù)上述統(tǒng)計圖表,可得此次采訪的人數(shù)為 ,m ,n

(2)根據(jù)以上信息補全圖中的條形統(tǒng)計圖.

(3)請估計在該小區(qū)1500名居民中,高度關注新高考政策的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+cx軸交于點AB,AB2,與y軸交于點C,對稱軸為直線x2

1)求拋物線的函數(shù)表達式;

2)設D為拋物線的頂點,連接DA、DB,試判斷ABD的形狀,并說明理由;

3)設P為對稱軸上一動點,要使PCPB的值最大,求出P點的坐標.

查看答案和解析>>

同步練習冊答案