【題目】小強(qiáng)想知道湖中兩個(gè)小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測(cè)點(diǎn)M處,測(cè)得亭A在點(diǎn)M的北偏東30°,亭B在點(diǎn)M的北偏東60°,當(dāng)小明由點(diǎn)M沿小道I向東走60米時(shí),到達(dá)點(diǎn)N處,此時(shí)測(cè)得亭A恰好位于點(diǎn)N的正北方向,繼續(xù)向東走30米時(shí)到達(dá)點(diǎn)Q處,此時(shí)亭B恰好位于點(diǎn)Q的正北方向,根據(jù)以上測(cè)量數(shù)據(jù),請(qǐng)你幫助小強(qiáng)計(jì)算湖中兩個(gè)小亭A、B之間的距離.
【答案】60m
【解析】
連接AN、BQ,過(guò)B作BE⊥AN于點(diǎn)E.在Rt△AMN和在Rt△BMQ中,根據(jù)三角函數(shù)就可以求得AN,BQ,求得NQ,AE的長(zhǎng),在直角△ABE中,依據(jù)勾股定理即可求得AB的長(zhǎng).
連接AN、BQ,
∵點(diǎn)A在點(diǎn)N的正北方向,點(diǎn)B在點(diǎn)Q的正北方向,
∴AN⊥l,BQ⊥l,
在Rt△AMN中:tan∠AMN=,
∴AN=60,
在Rt△BMQ中:tan∠BMQ=,
∴BQ=30,
過(guò)B作BE⊥AN于點(diǎn)E,
則BE=NQ=30,
∴AE=AN-BQ=30,
在Rt△ABE中,
AB2=AE2+BE2,
AB2=(30)2+302,
∴AB=60.
答:湖中兩個(gè)小亭A、B之間的距離為60米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式kx+b>的解集;
(3)過(guò)點(diǎn)A作直線l,若直線l與兩坐標(biāo)軸圍成的三角形面積為8,請(qǐng)直接寫(xiě)出滿足條件的直線l的條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠ACB=90°,AC=3,BC=7,點(diǎn)P是邊AC上不與點(diǎn)A、C重合的一點(diǎn),作PD∥BC交AB邊于點(diǎn)D.
(1)如圖1,將△APD沿直線AB翻折,得到△AP'D,作AE∥PD.求證:AE=ED;
(2)將△APD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到△AP'D',點(diǎn)P、D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)P'、D',
①如圖2,當(dāng)點(diǎn)D'在△ABC內(nèi)部時(shí),連接P′C和D'B,求證:△AP'C∽△AD'B;
②如果AP:PC=5:1,連接DD',且DD'=AD,那么請(qǐng)直接寫(xiě)出點(diǎn)D'到直線BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電影公司隨機(jī)收集了2000部電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到如表:
電影類型 | 第一類 | 第二類 | 第三類 | 第四類 | 第五類 | 第六類 |
電影部數(shù) | 140 | 50 | 300 | 200 | 800 | 510 |
好評(píng)率 |
注:好評(píng)率是指一類電影中獲得好評(píng)的部數(shù)與該類電影的部數(shù)的比值.
如果電影公司從收集的電影中隨機(jī)選取1部,那么抽到的這部電影是獲得好評(píng)的第四類電影的概率是______;
電影公司為了增加投資回報(bào),擬改變投資策略,這將導(dǎo)致不同類型電影的好評(píng)率發(fā)生變化假設(shè)表格中只有兩類電影的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評(píng)率增加,哪類電影的好評(píng)率減少,可使改變投資策略后總的好評(píng)率達(dá)到最大?
答:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點(diǎn),將△ABC沿DE折疊,使點(diǎn)B落在AC邊上點(diǎn)F處,并且DF∥BC,若CF=3,BC=9,則AB的長(zhǎng)是( )
A. B. 15C. D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在將式子(m>0)化簡(jiǎn)時(shí),
小明的方法是:===;
小亮的方法是: ;
小麗的方法是:.
則下列說(shuō)法正確的是( 。
A. 小明、小亮的方法正確,小麗的方法不正確
B. 小明、小麗的方法正確,小亮的方法不正確
C. 小明、小亮、小麗的方法都正確
D. 小明、小麗、小亮的方法都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).將拋物線繞點(diǎn)旋轉(zhuǎn),得到新的拋物線,它的頂點(diǎn)為,與軸的另一個(gè)交點(diǎn)為.若四邊形為矩形,則,應(yīng)滿足的關(guān)系式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,AB=10cm,BC=8cm,點(diǎn)P從點(diǎn)A沿AC向點(diǎn)C以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C沿CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng)(點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B停止)。則四邊形PABQ的面積y()與運(yùn)動(dòng)時(shí)間x(s)之間的函數(shù)圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,直線DF是⊙O的切線,D為切點(diǎn),交CB的延長(zhǎng)線于點(diǎn)E.
(1)求證:DF⊥AC;
(2)求tan∠E的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com