【題目】已知:如圖,菱形ABCD的周長為20cm,對角線AC=8cm,直線l從點A出發(fā),以1cm/s的速度沿AC向右運動,直到過點C為止在運動過程中,直線l始終垂直于AC,若平移過程中直線l掃過的面積為S(cm2),直線l的運動時間為t(s),則下列最能反映S與t之間函數關系的圖象是( 。
A.B.
C.D.
【答案】B
【解析】
先由勾股定理計算出BO,OD,進而求出△AMN的面積.從而就可以得出0≤t≤4時的函數解析式;再得出當4<t≤8時的函數解析式.
解:連接BD交AC于點O,令直線l與AD或CD交于點N,與AB或BC交于點M.
∵菱形ABCD的周長為20cm,∴AD=5cm.
∵AC=8cm,∴AO=OC=4cm,由勾股定理得OD=OB==3cm,分兩種情況:(1)當0≤t≤4時,如圖1,MN∥BD,△AMN∽△ABD,
∴,,∴MN=t,∴S=MN·AE=t·t=t2
函數圖象是開口向上,對稱軸為y軸且位于對稱軸右側的拋物線的一部分;
(2)當4<t≤8時,如圖2,MN∥BD,∴△CMN∽△CBD,
∴,,MN=t+12,
∴S=S菱形ABCD-S△CMN==t2+12t-24=(t-8)2+24.
函數圖象是開口向下,對稱軸為直線t=8且位于對稱軸左側的拋物線的一部分.
故選B.
科目:初中數學 來源: 題型:
【題目】垃圾分類問題受到全社會的廣泛關注,我區(qū)某校學生會向全校2100名學生發(fā)起了“垃圾要回家,請你幫助它”的捐款活動,用于購買垃圾分類桶.為了解捐款情況,學生會隨機調查了部分學生的捐款金額,并用得到的數據繪制了如圖統(tǒng)計圖1和圖2,請根據相關信息,解答下列問題:
(1)本次接受隨機抽樣調查的學生人數為 ,圖1中m的值是 ;
(2)求本次調查獲取的樣本數據的平均數、眾數和中位數;
(3)根據樣本數據,估計該校本次活動捐款金額為5元的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經驗和知識,完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,為放置在水平桌面上的臺燈,底座的高為.長度均為的連桿,與始終在同一水平面上.
(1)旋轉連桿,,使成平角,,如圖2,求連桿端點離桌面的高度.
(2)將(1)中的連桿繞點逆時針旋轉,使,如圖3,問此時連桿端點離桌面的高度是增加了還是減少?增加或減少了多少?(精確到,參考數據:,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數和一次函數y=kx-1的圖象相交于A(m,2m),B兩點.
(1)求一次函數的表達式;
(2)求出點B的坐標,并根據圖象直接寫出滿足不等式的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校王老師組織九(1)班同學開展數學活動,某天帶領同學們測量學校附近一電線桿的高.已知電線桿直立于地面上,在太陽光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測得電線桿頂端A的仰角為30°,在C處測得電線桿頂端A的仰角為45°,斜坡與地面成60°角,CD=4m,請你根據這些數據求電線桿的高AB.(結果用根號表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,B,C,D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據以上信息回答:
(1)將兩幅不完整的圖補充完整;
(2)本次參加抽樣調查的居民有多少人?
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com