【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為( )
A.
B.
C.
D.
【答案】D
【解析】解:∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2 ,
即∠BAC=90°.
又∵PE⊥AB于E,PF⊥AC于F,
∴四邊形AEPF是矩形,
∴EF=AP.
∵M(jìn)是EF的中點(diǎn),
∴AM= EF= AP.
因?yàn)锳P的最小值即為直角三角形ABC斜邊上的高,即等于 ,
∴AM的最小值是 .
故選D.
【考點(diǎn)精析】利用垂線段最短和勾股定理的逆定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短;現(xiàn)實(shí)生活中開溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應(yīng)用;如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購(gòu)進(jìn)甲種玩具的件數(shù)與用150元購(gòu)進(jìn)乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過1000元,求商場(chǎng)共有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC內(nèi)有邊長(zhǎng)分別為a,b,c的三個(gè)正方形,則a,b,c滿足的關(guān)系式是( )
A.b=a+c
B.b=ac
C.b2=a2+c2
D.b=2a=2c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡(jiǎn),再求代數(shù)式的值:( ﹣ )÷ ,其中sin230°<a<tan260°,請(qǐng)你取一個(gè)合適的整數(shù)作為a的值代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次時(shí)裝表演會(huì)預(yù)算中票價(jià)定為每張100元,容納觀眾人數(shù)不超過2000人,毛利潤(rùn)y(百元)關(guān)于觀眾人數(shù)x(百人)之間的函數(shù)圖象如圖所示,當(dāng)觀眾人數(shù)超過1000人時(shí),表演會(huì)組織者需向保險(xiǎn)公司繳納定額平安保險(xiǎn)5000(不列入成本費(fèi)用),請(qǐng)解答下列問題:
(1)當(dāng)觀眾不超過1000人時(shí),毛利潤(rùn)y關(guān)于觀眾人數(shù)x的函數(shù)解析式和成本費(fèi)用s(百元)關(guān)于觀眾人數(shù)x(百人)的函數(shù)解析式;
(2)若要使這次表演會(huì)獲得36000元的毛利潤(rùn),那么需售出多少?gòu)堥T票需支付成本費(fèi)用多少元(當(dāng)觀眾人數(shù)不超過1000人時(shí),表演會(huì)的毛利潤(rùn)=門票收入﹣成本費(fèi)用;當(dāng)觀眾人數(shù)超過1000人時(shí),表演會(huì)的毛利潤(rùn)=門票收入﹣成本費(fèi)用﹣平安保險(xiǎn)費(fèi)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線 (k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線上,則a的值是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O(0,0),A(0,1)是正方形OAA1B的兩個(gè)頂點(diǎn),以O(shè)A1對(duì)角線為邊作正方形OA1A2B1 , 再以正方形的對(duì)角線OA2作正方形OA1A2B1 , …,依此規(guī)律,則點(diǎn)A8的坐標(biāo)是( )
A.(﹣8,0)
B.(0,8)
C.(0,8 )
D.(0,16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c的頂點(diǎn)為D(﹣1,﹣4),與y軸交于點(diǎn)C(0,﹣3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的解析式;
(2)連接AC,CD,AD,試證明△ACD為直角三角形;
(3)若點(diǎn)E在拋物線的對(duì)稱軸上,拋物線上是否存在點(diǎn)F,使以A,B,E,F(xiàn)為頂點(diǎn)的四邊形為平行四邊形?若存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com