【題目】如圖,將矩形ABCD的四邊BA,CB,DC,AD分別延長至點EF,G,H,使得AE=BF=CG=DH.已知AB=1,BC=2,∠BEF=30°,則tan∠AEH的值為( 。
A.2B.C.﹣1D. +1
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個,比賽結(jié)束后隨機抽查部分學生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計圖的一部分.
組別 | 正確字數(shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計表中,m= ,n= ,并補全條形統(tǒng)計圖.
(2)扇形統(tǒng)計圖中“C組”所對應的圓心角的度數(shù)是 .
(3)若該校共有900名學生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計這所學校本次比賽聽寫不合格的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r,給出如下定義:若點P的橫、縱坐標均為整數(shù),且到圓心C的距離d≤r,則稱P為⊙C 的關聯(lián)整點.
(1)當⊙O的半徑r=2時,在點D(2,-2),E(-1,0),F(0,2)中,為⊙O的關聯(lián)整點的是 ;
(2)若直線上存在⊙O的關聯(lián)整點,且不超過7個,求r的取值范圍;
(3)⊙C的圓心在x軸上,半徑為2,若直線上存在⊙C的關聯(lián)整點,求圓心C的橫坐標t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某演唱會購買門票的方式有兩種
方式一:若單位贊助廣告費10萬元,則該單位所購門票的價格為每張0.02萬元;(注方式一中總費用=廣告費用+門票費用)
方式二:按如圖所示的購買門票方式.
設購買門票x張,總費用為y萬元.
(1)求按方式一購買時y與x的函數(shù)關系式
(2)若甲、乙兩個單位分采用方式一,方式二購買本場演唱會門共400張,且乙單位購買超過100張,兩單位共花費27.2萬元,求甲、乙兩單位各購買門票多少張?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交BC于點D,交AC于點F,過點C作CE∥AB,與過點A的切線相交于點E,連接AD.
(1)求證:AD=AE.
(2)若AB=10,sin∠DAC=求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解七年級學生體能狀況,從七年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A、B、C、D四個等級,并依據(jù)測試成績繪制了如下兩幅尚不完整的統(tǒng)計圖:
(1)這次抽樣調(diào)查的樣本容量是 ,請補全條形圖;
(2)D等級學生人數(shù)占被調(diào)查人數(shù)的百分比為 ,在扇形統(tǒng)計圖中B等級所對應的圓心角為 .
(3)該校九年級學生有1600人,請你估計其中A等級的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人分別從A、B兩地同時出發(fā),相向而行,勻速前往B地、A地,兩人相遇時停留了4min,又各自按原速前往目的地,甲、乙兩人之間的距離y(m)與甲所用時間x(min) 之間的函數(shù)關系如圖所示.有下列說法: ①A、B之間的距離為1200m;②甲行走的速度是乙的1.5倍;③;④.以上結(jié)論正確的有( )
A.①④B.①②③C.①③④D.①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4交y軸于點A,并經(jīng)過B(4,4)和C(6,0)兩點,點D的坐標為(4,0),連接AD,BC,點F從點O出發(fā),以每秒1個單位長度的速度沿線段OC方向運動,到達點C后停止運動:點M同時從點D出發(fā)以每秒1個單位長度的速度沿x軸正方向運動,當點F停止時點M也停止運動.設點F的運動時間為t秒,過點F作AB的垂線EF交直線AB于點E,交AD于點H.
(1)求拋物線的解析式;
(2)以線段EH為斜邊向右作等腰直角△EHG,當點G落在第一象限內(nèi)的拋物線上時,求出t的值;
(3)設△EFM與四邊形ADCB重合時的面積為S,請直接寫出S與t的函數(shù)關系式與相應的自變量t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com