【題目】如圖所示,∠AOB70°,以點(diǎn)O為圓心,以適當(dāng)長為半徑作弧分別交OA,OBC,D兩點(diǎn);分別以CD為圓心,以大于CD的長為半徑作弧,兩弧相交于點(diǎn)P;以O為端點(diǎn)作射線OP,在射線OP上取點(diǎn)M,連接MC、MD.若測得∠CMD40°,則∠MDB_____

【答案】55°

【解析】

利用基本作圖得到OCODOP平分∠AOB,則∠AOP=∠BOP35°,再證明OMC≌△OMD得到∠OMC=∠OMD20°,然后利用三角形外角性質(zhì)計(jì)算∠MDB

解:由作法得OCOD,OP平分∠AOB,則∠AOP=∠BOPAOB35°

OMCOMD

,

∴△OMC≌△OMDSAS),

∴∠OMC=∠OMDCMD20°,

∴∠MDB=∠DOM+OMD35°+20°55°

故答案為55°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD的邊長為4cm,A=120°,則菱形ABCD的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】象棋是棋類益智游戲,中國象棋在中國有著三千多年的歷史,由于用具簡單,趣味性強(qiáng),成為流行極為廣泛的棋藝活動.李凱和張萌利用象棋棋盤和棋子做游戲.李凱將四枚棋子反面朝上放在棋盤上,其中有兩個(gè)、一個(gè)、一個(gè),張萌隨機(jī)從這四枚棋子中摸一枚棋子,記下正漢字,然后再從剩下的三枚棋子中隨機(jī)摸一枚.

1)求張萌第一次摸到的棋子正面上的漢字是的概率;

2)游戲規(guī)定:若張萌兩次摸到的棋子中有,則張萌勝;否則,李凱勝.請你用樹狀圖或列表法求李凱勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一批成本為每件30元的商品,商店按單價(jià)不低于成本價(jià),且不高于50元銷售.經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量y(件)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.

1)求該商品每天的銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

2)銷售單價(jià)定為多少元時(shí),才能使銷售該商品每天獲得的利潤w(元)最大?最大利潤是多少?

3)若商店要使銷售該商品每天獲得的利潤高于800元,請直接寫出每天的銷售量y(件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

如圖①,在中中,,,,過點(diǎn),將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn),得到,連接,,記旋轉(zhuǎn)角為

1)問題發(fā)現(xiàn)

如圖②,當(dāng)時(shí),__________;如圖③,當(dāng)時(shí),__________

2)拓展探究

試判斷:當(dāng)時(shí),的大小有無變化?請僅就圖④的情形給出證明.

3)問題解決

如圖⑤,當(dāng)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至點(diǎn)落在邊上時(shí),求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】世界500強(qiáng)H公司決定購買某演唱會門票獎勵部分優(yōu)秀員工,演唱會的購票方式有以下兩種,

方式一:若單位贊助廣告費(fèi)10萬元,則該單位所購門票的價(jià)格為每張0.02萬元(其中總費(fèi)用=廣告贊助費(fèi)+門票費(fèi));

方式二:如圖所示,設(shè)購買門票x張,總費(fèi)用為y萬元

1)求用購票方式一時(shí)yx的函數(shù)關(guān)系式;

2)若HA兩家公司分別釆用方式一、方式二購買本場演唱會門票共400張,且A公司購買超過100張,兩公司共花費(fèi)27.2萬元,求H、A兩公司各購買門票多少張?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】河南省政府為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),計(jì)劃扶持興建一批新型鋼管裝配式大棚,如圖1所示線段AB、BD分別為大棚的墻高和跨度,AC表示保溫板的長,已知墻高AB3米,墻面與保溫板所成的角∠BAC150°,在點(diǎn)D處測得A點(diǎn)、C點(diǎn)的仰角分別為9°,156°,如圖2所示求保溫板AC的長是多少米?(精確到0.1米)(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99tan9°≈016,sin15.6°≈0.27,cos15.6°≈0.96tan15.6°≈0.28,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師在講解復(fù)習(xí)《圓》的內(nèi)容時(shí),用投影儀屏幕展示出如下內(nèi)容:

張老師讓同學(xué)們添加條件后,編制一道題目,并按要求完成下列填空.

1)在屏幕內(nèi)容中添加條件,則的長為______

2)以下是小明、小聰?shù)膶υ挘?/span>

參考上面對話,在屏幕內(nèi)容中添加條件,編制一道題目(此題目不解答,可以添線、添字母).

_________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在扇形中,,半徑,點(diǎn)P上任一點(diǎn)(不與A、O重合).

1)如圖①,Q上一點(diǎn),若,求證:.

2)如圖②,將扇形沿折疊,得到O的對稱點(diǎn).

①若點(diǎn)落在上,求的長;

②當(dāng)與扇形所在的圓相切時(shí),求折痕的長.(注:本題結(jié)果不取近似值)

查看答案和解析>>

同步練習(xí)冊答案