【題目】如圖,在中,,,點在延長線上,點在上,且,延長交于點,連接、.
(1)求證:;
(2)若,則__________.
【答案】(1)見解析;(2)75°
【解析】
(1)證明Rt△ABE≌Rt△CBF,即可得到結(jié)論;
(2)由Rt△ABE≌Rt△CBF證得BE=BF,∠BEA=∠BFC,求出∠BFE=∠BEF=45°,B、E、G、F四點共圓,根據(jù)圓周角定理得到∠BGF=∠BEF=45°即可求出答案.
(1)∵,
∴∠CBF=,
在Rt△ABE和Rt△CBF中,
,
∴Rt△ABE≌Rt△CBF,
∴BE=BF;
(2)∵BE=BF,∠CBF=90°,
∴∠BFE=∠BEF=45°,
∵Rt△ABE≌Rt△CBF,
∴∠BEA=∠BFC,
∵∠BEA+∠BAE=90°,
∴∠BFC+∠BAE=90°,
∴∠AGF=90°,
∵∠AEB+∠BEG=180°,
∴∠BEG+∠BFG=180°,
∵∠AGF+∠FBC=180°,
∴B、E、G、F四點共圓,
∵BE=BF,
∴∠BGF=∠BEF=45°,
∵∠GBF=60°,
∴∠GFB=180°-∠GBF-∠BGF=75°,
故答案為:75°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個班的160厘米以上的女生中抽出一個作為旗手,在哪個班成功的機會大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.
(1)求證:AE=2CE;
(2)連接CD,請判斷△BCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,E,F(xiàn)為BD所在直線上的兩點.若AE= ,∠EAF=135°,則以下結(jié)論正確的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四邊形AFCE的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,△ABC是格點三角形(三角形的三個頂點都是小正方形的頂點).
(1)在第一象限內(nèi)找一點P,以格點P、A、B為頂點的三角形與△ABC相似但不全等,請寫出符合條件格點P的坐標;
(2)請用直尺與圓規(guī)在第一象限內(nèi)找到兩個點M、N,使∠AMB=∠ANB=∠ACB.請保留作圖痕跡,不要求寫畫法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國西南五省市的部分地區(qū)發(fā)生嚴重旱災(zāi),為鼓勵節(jié)約用水,某市自來水公司采取分段收費標準,右圖反映的是每月收取水費y(元)與用水量x(噸)之間的函數(shù)關(guān)系.
(1)小明家五月份用水8噸,應(yīng)交水費______ 元;
(2)按上述分段收費標準,小明家三、四月份分別交水費26元和18元,問四月份比三月份節(jié)約用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實黨的“精準扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運肥料的費用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.
(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調(diào)運才能使總運費最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列判斷不正確的是( )
A. ac<0 B. a﹣b+c>0 C. b=﹣4a D. a+b+c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,張老師出示了一道題的已知條件:如圖四邊形ABCD中,AD=CD,AB=CB,要求同學(xué)們寫出正確結(jié)論.小明思考后,寫出了四個結(jié)論如下:①△ABD≌△CBD;②AC⊥BD;③四邊形ABCD的面積=ACBD;④線段BD,AC互相平分,其中小明寫出的結(jié)論中正確的有( )個
A.1B.2
C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com