【題目】如圖,點(diǎn)O是邊長(zhǎng)為4 的等邊△ABC的內(nèi)心,將△OBC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°得到△OB1C1 , B1C1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E,則DE=

【答案】6﹣2
【解析】解:令OB1與BC的交點(diǎn)為F,B1C1與AC的交點(diǎn)為M,過(guò)點(diǎn)F作FN⊥OB于點(diǎn)N,如圖所示.
∵將△OBC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°得到△OB1C1
∴∠BOF=30°,
∵點(diǎn)O是邊長(zhǎng)為4 的等邊△ABC的內(nèi)心,
∴∠OBF=30°,OB= AB=4,
∴△FOB為等腰三角形,BN= OB=2,
∴BF= = =OF.
∵∠OBF=∠OB1D,∠BFO=∠B1FD,
∴△BFO∽△B1FD,

∵B1F=OB1﹣OF=4﹣ ,
∴B1D=4 ﹣4.
在△BFO和△CMO中,有 ,
∴△BFO≌△CMO(ASA),
∴OM=BF= ,C1M=4﹣
在△C1ME中,∠C1ME=∠MOC+∠MCO=60°,∠C1=30°,
∴∠C1EM=90°,
∴C1E=C1Msin∠C1ME=(4﹣ )× =2 ﹣2.
∴DE=B1C1﹣B1D﹣C1E=4 ﹣(4 ﹣4)﹣(2 ﹣2)=6﹣2
所以答案是:6﹣2
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等邊三角形的性質(zhì)和三角形的內(nèi)切圓與內(nèi)心,掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系xOy(如圖),直線 y=x+b經(jīng)過(guò)第一、二、三象限,與y軸交于點(diǎn)B,點(diǎn)A(2,t)在直線y=x+b上,連結(jié)AO,△AOB的面積等于1.

(1)求b的值;

(2)如果反比例函數(shù)y= (k是常量,k≠0)的圖象經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是ABC的三邊長(zhǎng)且滿足2a4+2b4+c4=2a2c2+2b2c2,ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

【答案】B

【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c2,4a4-4a2c2+c4+4b4-4b2c2+c4=0,

2a2-c22+2b2-c22=02a2-c2=0,2b2-c2=0,

c=2ac=2b,

a=b,且a2+b2=c2,

∴△ABC為等腰直角三角形.

故選B.

型】單選題
結(jié)束】
11

【題目】將圖1中陰影部分的小長(zhǎng)方形變換到圖2的位置,你能根據(jù)兩個(gè)圖形的面積關(guān)系得到的數(shù)學(xué)公式是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABEF,BCCD于點(diǎn)C,ABC=30°,DEF=45°,則∠CDE等于(  )

A. 105° B. 75° C. 135° D. 115°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條直線上任取一點(diǎn)A,截取AB=20 cm,再截取AC=18 cm,M,N分別是AB,AC的中點(diǎn),求M,N兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn) A 表示的有理數(shù)為﹣4,點(diǎn) B 表示的有理數(shù)為 6,點(diǎn) P 點(diǎn) A 出發(fā)以每秒 2 個(gè)單位長(zhǎng)度的速度在數(shù)軸上沿由 A B 方向運(yùn)動(dòng),當(dāng)點(diǎn) P 達(dá)點(diǎn) B 后立即返回,仍然以每秒 2 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)至點(diǎn) A 停止運(yùn)動(dòng).設(shè) 運(yùn)動(dòng)時(shí)間為 t(單位:秒).

1)求 t=2 時(shí)點(diǎn) P 表示的有理數(shù);

2)求點(diǎn) P AB 的中點(diǎn)時(shí) t 的值;

3)在點(diǎn) P 由點(diǎn) A 到點(diǎn) B 的運(yùn)動(dòng)過(guò)程中,求點(diǎn) P 與點(diǎn) A 的距離(用含 t 的代數(shù)式表示);

4在點(diǎn) P 由點(diǎn) B 到點(diǎn) A 的返回過(guò)程中,點(diǎn) P 表示的有理數(shù)是多少(用含 t 代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以菱形ABCD對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,A、B兩點(diǎn)的坐標(biāo)分別為(﹣2 ,0)、(0,﹣ ),直線DE⊥DC交AC于E,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿著A→D→C的路線向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PDE的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)求直線DE的解析式;
(2)求S與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(3)當(dāng)t為何值時(shí),∠EPD+∠DCB=90°?并求出此時(shí)直線BP與直線AC所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 ABC 中,∠C=90°,DBBC 于點(diǎn) ,分別以點(diǎn) D 和點(diǎn) 為圓心,以大于 的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn) E 和點(diǎn) ,作直線 EF,延長(zhǎng) AB 于點(diǎn) ,連接 DG,下面是說(shuō)明 ∠A=∠D 的說(shuō)理過(guò)程,請(qǐng)把下面的說(shuō)理過(guò)程補(bǔ)充完整:

因?yàn)?/span> DBBC(已知),

所以 DBC=90°( )

因?yàn)?/span> C=90°(已知),

所以 DBC=C(等量代換),

所以 DBAC ( ) ,

所以 (兩直線平行,同位角相等);

由作圖法可知:直線 EF 是線段 DB ( ) ,

所以 GD=GB,線段 (上的點(diǎn)到線段兩端點(diǎn)的距離相等),

所以 ( ) ,因?yàn)?/span> A=1(已知),

所以 A=D(等量代換).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點(diǎn),且BE=CF,連接AF,DE交于點(diǎn)O.

求證:(1)△ABF≌△DCE;

(2)△AOD是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案