【題目】在平面直角坐標系中,點A(1,1),B(4,3),將點A向左平移2個單位長度,再向上平移3個單位長度得到點C.

(1)寫出點C的坐標;

(2)畫出△ABC并判斷△ABC的形狀.

【答案】(1)C(﹣1,4);(2)ABC是等腰直角三角形;過程見詳解.

【解析】

(1)根據(jù)向左平移2個單位長度為橫坐標減2,向上平移3個單位長度為縱坐標加3,即可得到C點坐標.

(2)如圖,順次連接A,B,C,然后根據(jù)每個點的坐標利用兩點間的距離公式分別求出AB,BC,CA的長,再根據(jù)勾股定理逆定理判斷即可.

(1)∵將點A(1,1)向左平移2個單位長度,再向上平移3個單位長度得到點C,

∴C(﹣1,4);

(2)△ABC是等腰直角三角形;

如圖所示,根據(jù)勾股定理得,AB===

BC===,

AC===,

∴AB=AC,

∵AB2+AC2=BC2=26,

∴△ABC是直角三角形,

∴△ABC是等腰直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某容器由A、B、C三個連通長方體組成,其中A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是整個容器容積的(容器各面的厚度忽略不計),A、B的總高度為12厘米.現(xiàn)以均勻的速度(單位:cm3/min)向容器內(nèi)注水,直到注滿為止.已知單獨注滿A、B分別需要的時間為10分鐘、8分鐘.

(1)求注滿整個容器所需的總時間;

(2)設(shè)容器A的高度為xcm,則容器B的高度為   cm;

(3)求容器A的高度和注水的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某地有一地下工程,其底面是正方形,面積為405m2,四個角是面積為5m2的小正方形滲水坑,根據(jù)這些條件如何求a的值?與你的同伴進行交流.

下面是小康提供的解題方案,根據(jù)解題方案請你完成本題的解答過程:

①設(shè)大正方形的邊長為x m,小正方形的邊長為y m,那么根據(jù)題意可列出關(guān)于x的方程為_______,關(guān)于y的方程為_______;

②利用平方根的意義,可求得x=________(取正值,結(jié)果保留根號),y=________(取正值,結(jié)果保留根號);

③所以a=x-2y=______________________(結(jié)果保留根號);

④答:________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與x軸相交于點B(1,0)和點C(9,0)兩點,與y軸的負半軸相交于A點,過A、B、C三點的⊙P與y軸相切于點A,M為y軸正半軸上的一個動點,直線MB交⊙P于點D,交拋物線于點N.

(1)求點A坐標和⊙P的半徑;
(2)求拋物線的解析式;
(3)當△MOB與以點B、C、D為頂點的三角形相似時,求△CDN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了進一步普及足球知識,傳播足球文化,某市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統(tǒng)計圖表:

獲獎等次

頻數(shù)

頻率

一等獎

10

0.05

二等獎

20

0.10

三等獎

30

b

優(yōu)勝獎

a

0.30

鼓勵獎

80

0.40

請根據(jù)所給信息,解答下列問題:
(1)a= , b=;
(2)補全頻數(shù)分布直方圖;
(3)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表該市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=kx+b的圖象經(jīng)過點A(0,9),并且與直線y=x相交于點B,與x軸相交于點C.

(1)若點B的橫坐標為3,求B點的坐標和k,b的值;

(2)在y軸上是否存在這樣的點P,使得以點P,B,A為頂點的三角形是等腰三角形?若存在,請直接寫出點P坐標;若不存在,請說明理由.

(3)在直線y=kx+b上是否存在點Q,使△OBQ的面積等于?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,A=40°,B=70°,CE平分ACB,CDAB于D,DFCE,則CDF= 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在折紙活動中,小明制作了一張△ABC紙片,點D、E分別是邊AB、AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=75°,則∠1+∠2=(
A.150°
B.210°
C.105°
D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)一個兩位正整數(shù),a表示十位上的數(shù)字,b表示個位上的數(shù)字(ab,ab≠0),則這個兩位數(shù)用多項式表示為   (含a、b的式子);若把十位、個位上的數(shù)字互換位置得到一個新兩位數(shù),則這兩個兩位數(shù)的和一定能被   整除,這兩個兩位數(shù)的差一定能被   整除

(2)一個三位正整數(shù)F,各個數(shù)位上的數(shù)字互不相同且都不為0.若從它的百位、十位、個位上的數(shù)字中任意選擇兩個數(shù)字組成6個不同的兩位數(shù).若這6個兩位數(shù)的和等于這個三位數(shù)本身,則稱這樣的三位數(shù)F友好數(shù),例如:132友好數(shù)

一個三位正整數(shù)P,各個數(shù)位上的數(shù)字互不相同且都不為0,若它的十位數(shù)字等于百位數(shù)字與個位數(shù)字的和,則稱這樣的三位數(shù)P和平數(shù)

①直接判斷123是不是友好數(shù)”?

②直接寫出共有   和平數(shù)

③通過列方程的方法求出既是和平數(shù)又是友好數(shù)的數(shù).

查看答案和解析>>

同步練習冊答案