【題目】如圖,ABC中,A=40°B=70°,CE平分ACB,CDAB于D,DFCE,則CDF= 度.

【答案】75

【解析】

試題分析:首先根據(jù)三角形的內(nèi)角和定理求得ACB的度數(shù),以及BCD的度數(shù),根據(jù)角平分線的定義求得BCE的度數(shù),則ECD可以求解,然后在CDF中,利用內(nèi)角和定理即可求得CDF的度數(shù).

∵∠A=40°B=70°, ∴∠ACB=180°﹣∠A﹣∠B=70° CE平分ACB,

∴∠ACE=ACB=35° CDAB于D, ∴∠CDA=90° ACD=180°﹣∠A﹣∠CDA=50°

∴∠ECD=ACD﹣∠ACE=15° DFCE, ∴∠CFD=90°, ∴∠CDF=180°﹣∠CFD﹣∠DCF=75°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(π﹣3)0﹣(﹣1)2017+(﹣ 2+tan60°+| ﹣2|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)P為線段AB上的動(dòng)點(diǎn)(與A、B兩點(diǎn)不重合),在同一平面內(nèi),把線段AP、BP分別折成等邊△CDP和△EFP,且D、P、F三點(diǎn)共線,如圖所示.
(1)若DF=2,求AB的長(zhǎng);
(2)若AB=18時(shí),等邊△CDP和△EFP的面積之和是否有最大值,如果有最大值,求最大值及此時(shí)P點(diǎn)位置,若沒有最大值,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(1,1),B(4,3),將點(diǎn)A向左平移2個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度得到點(diǎn)C.

(1)寫出點(diǎn)C的坐標(biāo);

(2)畫出△ABC并判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:( 1﹣(2017﹣π)0﹣2sin45°+| ﹣1|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE,已知∠ABC=60°,EF⊥AB,垂足為F,連接DF.
(1)求證:△ABC≌△EAF;
(2)試判斷四邊形EFDA的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折線ABCDE描述了一輛汽車在某一直線上行駛過程中,汽車離出發(fā)地的距離y(km)和行駛時(shí)間x(h)之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法:汽車共行駛了120km汽車在行駛途中停留了0.5h;汽車在整個(gè)行駛過程中的平均速度為km/h;汽車自出發(fā)后3h~4.5h之間行駛的速度在逐漸減小.其中正確的說法是 .(填上所有正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點(diǎn),點(diǎn)P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q同時(shí)以1厘米/秒的速度從D出發(fā),沿DB勻速向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)設(shè)點(diǎn)M在AC上,四邊形PQCM為平行四邊形.
①若a= ,求PQ的長(zhǎng);
②是否存在實(shí)數(shù)a,使得點(diǎn)P在∠ACB的平分線上?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平分 , ,且

)求證:

)若, , ,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案