【題目】將紙片△ABC沿DE折疊使點(diǎn)A落在A′處的位置.
(1)如果A′落在四邊形BCDE的內(nèi)部(如圖1),∠A′與∠1+∠2之間存在怎樣的數(shù)量關(guān)系?并說(shuō)明理由.
(2)如果A′落在四邊形BCDE的BE邊上,這時(shí)圖1中的∠1變?yōu)?°角,則∠A′與∠2之間的關(guān)系是 .
(3)如果A′落在四邊形BCDE的外部(如圖2),這時(shí)∠A′與∠1、∠2之間又存在怎樣的數(shù)量關(guān)系?并說(shuō)明理由.
【答案】(1)2∠A=∠1+∠2,(2)2∠A=∠2;(3)2∠A=∠2-∠1.
【解析】
試題分析:(1)根據(jù)折疊性質(zhì)得出∠AED=∠A′ED,∠ADE=∠A′DE,根據(jù)三角形內(nèi)角和定理得出∠AED+∠ADE=180°-∠A,代入∠1+∠2=180°+180°-2(∠AED+∠ADE)求出即可;
(2)根據(jù)三角形外角性質(zhì)得出∠DME=∠A′+∠1,∠2=∠A+∠DME,代入即可求出答案.
試題解析:(1)圖1中,2∠A=∠1+∠2,
理由是:∵延DE折疊A和A′重合,
∴∠AED=∠A′ED,∠ADE=∠A′DE,
∵∠AED+∠ADE=180°-∠A,∠1+∠2=180°+180°-2(∠AED+∠ADE),
∴∠1+∠2=360°-2=2∠A;
(2)2∠A=∠2,如圖2
∠2=∠A+∠EA′D=2∠A,
(3)如圖3,2∠A=∠2-∠1,
理由是:∵延DE折疊A和A′重合,
∴∠A=∠A′,
∵∠DME=∠A′+∠1,∠2=∠A+∠DME,
∴∠2=∠A+∠A′+∠1,
即2∠A=∠2-∠1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,海中一小島上有一個(gè)觀測(cè)點(diǎn)A,某天上午9:00觀測(cè)到某漁船在觀測(cè)點(diǎn)A的西南方向上的B處跟蹤魚群由南向北勻速航行.當(dāng)天上午9:30觀測(cè)到該漁船在觀測(cè)點(diǎn)A的北偏西60°方向上的C處.若該漁船的速度為每小時(shí)30海里,在此航行過(guò)程中,問(wèn)該漁船從B處開始航行多少小時(shí),離觀測(cè)點(diǎn)A的距離最近?(計(jì)算結(jié)果用根號(hào)表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了迎接“五一”小長(zhǎng)假的購(gòu)物高峰.某運(yùn)動(dòng)品牌專賣店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表:已知:用3600元購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用3000元購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.
(1)求m的值;
(2)要使購(gòu)進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共200雙的總利潤(rùn)(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))不少于21600元,且不超過(guò)22440元,問(wèn)該專賣店有多少種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn)是四邊形ABCD對(duì)角線AC上的兩點(diǎn),AD∥BC,DF∥BE,AE=CF.
求證:(1)△AFD≌△CEB;(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(-1,-2)所在的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)開展“綠化家鄉(xiāng)、植樹造林”活動(dòng),為了解全校植樹情況,對(duì)該校甲、乙、丙、丁四個(gè)班級(jí)植樹情況進(jìn)行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問(wèn)題:
(1)這四個(gè)班共植樹 棵;
(2)請(qǐng)你在答題卡上不全兩幅統(tǒng)計(jì)圖;
(3)求圖1中“甲”班級(jí)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)若四個(gè)班級(jí)植樹的平均成活率是95%,全校共植樹2000棵,請(qǐng)你估計(jì)全校種植的樹中成活的樹有多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊CD、AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四邊形DEOF中正確的有( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一青蛙從點(diǎn)A(-1,0)處向右跳2個(gè)單位長(zhǎng)度,再向上跳2個(gè)單位長(zhǎng)度到點(diǎn)A′處,則點(diǎn)A′的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com