【題目】如圖,已知AB是⊙O的直徑,過O點作OP⊥AB,交弦AC于點D,交⊙O于點E,且使∠PCA=∠ABC.
(1)求證:PC是⊙O的切線;
(2)若∠P=60°,PC=2,求PE的長.
【答案】(1)證明見解析;(2)4-.
【解析】
試題分析:(1)連接OC,由OB=OC及已知可得∠PCA=∠OCB.由直徑所對的圓周角為直角有∠ACB=90°,從而可得∠OCP=90°,所以PC是⊙O的切線;(2)在Rt△PCO中,利用∠P的正切和正弦分別求得OC、OP的長,再根據(jù)PE=OP-OE計算即可.
試題解析:(1)連接OC. ∵OB=OC,∴∠ABC=∠OCB. 又∠PCA=∠ABC,∴∠PCA=∠OCB.∵AB為⊙O直徑,∴∠ACB=90°. ∴∠ACO+∠OCB=90°,∴∠ACO+∠PCA=90°,即∠OCP=90°,∴PC是⊙O的切線;
(2)在Rt△PCO中,tan∠P=,∴OC=PCtan∠P=2tan60°=,sin∠P=,∴OP== =4,∴PE=OP-OE=OP-OC=4-.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于點A(-4,-1)和B(a,2).
(1)求反比例函數(shù)的解析式和點B的坐標(biāo).
(2)根據(jù)圖象回答,當(dāng)x在什么范圍內(nèi)時,一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,M是AB的中點,P是BC邊上的動點,連結(jié)PM,以點P為圓心,PM長為半徑作⊙P.當(dāng)⊙P與正方形ABCD的邊相切時,BP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,連接AE.AC和BE相交于點O.
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動點(圖2),(不與點B、C重合),連接PO并延長交線段AE于點Q,QR⊥BD,垂足為點R.
①四邊形PQED的面積是否隨點P的運(yùn)動而發(fā)生變化.若變化,請說明理由;若不變,求出四邊形PQED的面積;
②當(dāng)線段PB的長為何值時,△PQR與△BOC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形的項點都在坐標(biāo)軸上,若與面積分別為和,若雙曲線恰好經(jīng)過的中點,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=8.動點E,F同時分別從點A,B出發(fā),分別沿著射線AD和射線BD的方向均以每秒1個單位的速度運(yùn)動,連接EF,以EF為直徑作⊙O交射線BD于點M,設(shè)運(yùn)動的時間為t.
(1)當(dāng)點E在線段AD上時,用關(guān)于t的代數(shù)式表示DE,DM.
(2)在整個運(yùn)動過程中,
①連結(jié)CM,當(dāng)t為何值時,△CDM為等腰三角形.
②圓心O處在矩形ABCD內(nèi)(包括邊界)時,求t的取值范圍,并直接寫出在此范圍內(nèi)圓心運(yùn)動的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點C的坐標(biāo)為(8,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個單位長度的速度運(yùn)動,設(shè)直線l與菱形OABC的兩邊分別交于點M、N(點M在點N的上方).
(1)求A、B兩點的坐標(biāo);
(2)設(shè)△OMN的面積為S,直線l運(yùn)動時間為t秒(0≤t≤12),求S與t的函數(shù)表達(dá)式;
(3)在(2)的條件下,t為何值時,S最大?并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,對角線 AC 與 BD 相交于點 O ,點 E , F 分別為 OB , OD 的中點,延長 AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當(dāng) AB 與 AC 滿足什么數(shù)量關(guān)系時,四邊形 EGCF 是矩形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com