【題目】如圖,一隧道的橫截面是由一段拋物線及矩形的三邊圍成的,隧道寬BC=10米,矩形部分高AB=3米,拋物線型的最高點(diǎn)E離地面OE=6米,按如圖建立一個(gè)以BCx軸,OEy軸的直角坐標(biāo)系.

(1)求拋物線的解析式;

(2)如果該隧道內(nèi)設(shè)有雙車道,現(xiàn)有一輛貨運(yùn)卡車高4.5米,寬3米,這輛貨運(yùn)卡車能順利通過(guò)隧道嗎?

【答案】(1)y=+6;(2)這輛貨運(yùn)卡車能順利通過(guò)隧道.

【解析】

(1)根據(jù)題意和函數(shù)圖象可以設(shè)出拋物線的解析式,然后根據(jù)拋物線過(guò)點(diǎn)E和點(diǎn)A即可求得該拋物線的解析式;

(2)將x=±3代入(1)中的函數(shù)解析式求出相應(yīng)的函數(shù)值,然后和4.5比較大小即可解答本題

1)設(shè)拋物線的解析式為yax2+c

∵點(diǎn)E(0,6),點(diǎn)A(﹣5,3)在此拋物線上,∴,,∴此拋物線的解析式為y6;

(2)當(dāng)x=±3時(shí),y6=4.92>4.5,即這輛貨運(yùn)卡車能順利通過(guò)隧道

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長(zhǎng)是6+4,點(diǎn)O1,O2分別是ABF,CDE的內(nèi)心,則O1O2=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷售一種商品,成本是每千克30元,規(guī)定每千克售價(jià)不低于成本,且不高于90元.經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,當(dāng)售價(jià)每千克50元時(shí),銷售量y80千克;當(dāng)售價(jià)每千克60元時(shí),銷售量y60千克;

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤(rùn)為W(元),求Wx之間的函數(shù)表達(dá)式(利潤(rùn)=收入﹣成本),并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD既是△ABC的中線,又是角平分線,請(qǐng)判斷:

(1)△ABC的形狀;

(2)AD是否過(guò)△ABC外接圓的圓心O,⊙O是否是△ABC的外接圓,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+1x+m2+1)=0有兩個(gè)相等的實(shí)數(shù)根.

1)求m的值;

2)將y=﹣x2+m+1xm2+1)的圖象向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫出變化后函數(shù)的表達(dá)式;

3)在(2)的條件下,當(dāng)直線y2x+n與變化后的圖象有公共點(diǎn)時(shí),求n24n的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?

(3)過(guò)點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寧波某公司經(jīng)銷一種綠茶,每千克成本為元.市場(chǎng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量(千克)隨銷售單價(jià)(元/千克)的變化而變化,具體關(guān)系式為:.設(shè)這種綠茶在這段時(shí)間內(nèi)的銷售利潤(rùn)為(元),解答下列問(wèn)題:

(1)求的關(guān)系式;

(2)當(dāng)銷售單價(jià)取何值時(shí),銷售利潤(rùn)的值最大,最大值為多少?

(3)如果物價(jià)部門規(guī)定這種綠茶的銷售單價(jià)不得高于元/千克,公司想要在這段時(shí)間內(nèi)獲得元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程中,是一元二次方程共有( )

x2+3=0;2x2﹣3xy+4=0; x2﹣4x+k=0;x2+mx﹣1=0;3x2+x=20.

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案